14 resultados para Vicia sativa L
em Universidad Politécnica de Madrid
Resumo:
The evapotranspiration (ETc) of sprinkler-irrigated rice was determined for the semiarid conditions of NE Spain during 2001, 2002 and 2003. The surface renewal method, after calibration against the eddy covariance method, was used to obtain values of sensible heat flux (H) from high-frequency temperature readings. Latent heat flux values were obtained by solving the energy balance equation. Finally, lysimeter measurements were used to validate the evapotranspiration values obtained with the surface renewal method. Seasonal rice evapotranspiration was about 750–800 mm. Average daily ETc for mid-season (from 90 to 130 days after sowing) was 5.1, 4.5 and 6.1 mm day−1 for 2001, 2002 and 2003, respectively. The experimental weekly crop coefficients fluctuated in the range of 0.83–1.20 for 2001, 0.81–1.03 for 2002 and 0.84–1.15 for 2003. The total growing season was about 150–160 days. In average, the crop coefficients for the initial (Kcini), mid-season (Kcmid) and late-season stages (Kcend) were 0.92, 1.06 and 1.03, respectively, the length of these stages being about 55, 45 and 25 days, respectively.
Resumo:
Canopy characterization is essential for describing the interaction of a crop with its environment. The goal of this work was to determine the relationship between leaf area index (LAI) and ground cover (GC) in a grass, a legume and a crucifer crop, and to assess the feasibility of using these relationships as well as LAI-2000 readings to estimate LAI. Twelve plots were sown with either barley (Hordeum vulgare L.), vetch (Vicia sativa L.), or rape (Brassica napus L.). On 10 sampling dates the LAI (both direct and LAI-2000 estimations), fraction intercepted of photosynthetically active radiation (FIPAR) and GC were measured. Linear and quadratic models fitted to the relationship between the GC and LAI for all of the crops, but they reached a plateau in the grass when the LAI mayor que 4. Before reaching full cover, the slope of the linear relationship between both variables was within the range of 0.025 to 0.030. The LAI-2000 readings were linearly correlated with the LAI but they tended to overestimation. Corrections based on the clumping effect reduced the root mean square error of the estimated LAI from the LAI-2000 readings from 1.2 to less than 0.50 for the crucifer and the legume, but were not effective for barley.
Resumo:
La caracterización de los cultivos cubierta (cover crops) puede permitir comparar la idoneidad de diferentes especies para proporcionar servicios ecológicos como el control de la erosión, el reciclado de nutrientes o la producción de forrajes. En este trabajo se estudiaron bajo condiciones de campo diferentes técnicas para caracterizar el dosel vegetal con objeto de establecer una metodología para medir y comparar las arquitecturas de los cultivos cubierta más comunes. Se estableció un ensayo de campo en Madrid (España central) para determinar la relación entre el índice de área foliar (LAI) y la cobertura del suelo (GC) para un cultivo de gramínea, uno de leguminosa y uno de crucífera. Para ello se sembraron doce parcelas con cebada (Hordeum vulgare L.), veza (Vicia sativa L.), y colza (Brassica napus L.). En 10 fechas de muestreo se midieron el LAI (con estimaciones directas y del LAI-2000), la fracción interceptada de la radiación fotosintéticamente activa (FIPAR) y la GC. Un experimento de campo de dos años (Octubre-Abril) se estableció en la misma localización para evaluar diferentes especies (Hordeum vulgare L., Secale cereale L., x Triticosecale Whim, Sinapis alba L., Vicia sativa L.) y cultivares (20) en relación con su idoneidad para ser usadas como cultivos cubierta. La GC se monitorizó mediante análisis de imágenes digitales con 21 y 22 muestreos, y la biomasa se midió 8 y 10 veces, respectivamente para cada año. Un modelo de Gompertz caracterizó la cobertura del suelo hasta el decaimiento observado tras las heladas, mientras que la biomasa se ajustó a ecuaciones de Gompertz, logísticas y lineales-exponenciales. Al final del experimento se determinaron el C, el N y el contenido en fibra (neutrodetergente, ácidodetergente y lignina), así como el N fijado por las leguminosas. Se aplicó el análisis de decisión multicriterio (MCDA) con objeto de obtener un ranking de especies y cultivares de acuerdo con su idoneidad para actuar como cultivos cubierta en cuatro modalidades diferentes: cultivo de cobertura, cultivo captura, abono verde y forraje. Las asociaciones de cultivos leguminosas con no leguminosas pueden afectar al crecimiento radicular y a la absorción de N de ambos componentes de la mezcla. El conocimiento de cómo los sistemas radiculares específicos afectan al crecimiento individual de las especies es útil para entender las interacciones en las asociaciones, así como para planificar estrategias de cultivos cubierta. En un tercer ensayo se combinaron estudios en rhizotrones con extracción de raíces e identificación de especies por microscopía, así como con estudios de crecimiento, absorción de N y 15N en capas profundas del suelo. Las interacciones entre raíces en su crecimiento y en el aprovisionamiento de N se estudiaron para dos de los cultivares mejor valorados en el estudio previo: uno de cebada (Hordeum vulgare L. cv. Hispanic) y otro de veza (Vicia sativa L. cv. Aitana). Se añadió N en dosis de 0 (N0), 50 (N1) y 150 (N2) kg N ha-1. Como resultados del primer estudio, se ajustaron correctamente modelos lineales y cuadráticos a la relación entre la GC y el LAI para todos los cultivos, pero en la gramínea alcanzaron una meseta para un LAI>4. Antes de alcanzar la cobertura total, la pendiente de la relación lineal entre ambas variables se situó en un rango entre 0.025 y 0.030. Las lecturas del LAI-2000 estuvieron correlacionadas linealmente con el LAI, aunque con tendencia a la sobreestimación. Las correcciones basadas en el efecto de aglutinación redujeron el error cuadrático medio del LAI estimado por el LAI-2000 desde 1.2 hasta 0.5 para la crucífera y la leguminosa, no siendo efectivas para la cebada. Esto determinó que para los siguientes estudios se midieran únicamente la GC y la biomasa. En el segundo experimento, las gramíneas alcanzaron la mayor cobertura del suelo (83-99%) y la mayor biomasa (1226-1928 g m-2) al final del mismo. Con la mayor relación C/N (27-39) y contenido en fibra digestible (53-60%) y la menor calidad de residuo (~68%). La mostaza presentó elevadas GC, biomasa y absorción de N en el año más templado en similitud con las gramíneas, aunque escasa calidad como forraje en ambos años. La veza presentó la menor absorción de N (2.4-0.7 g N m-2) debido a la fijación de N (9.8-1.6 g N m-2) y escasa acumulación de N. El tiempo térmico hasta alcanzar el 30% de GC constituyó un buen indicador de especies de rápida cubrición. La cuantificación de las variables permitió hallar variabilidad entre las especies y proporcionó información para posteriores decisiones sobre la selección y manejo de los cultivos cubierta. La agregación de dichas variables a través de funciones de utilidad permitió confeccionar rankings de especies y cultivares para cada uso. Las gramíneas fueron las más indicadas para los usos de cultivo de cobertura, cultivo captura y forraje, mientras que las vezas fueron las mejor como abono verde. La mostaza alcanzó altos valores como cultivo de cobertura y captura en el primer año, pero el segundo decayó debido a su pobre actuación en los inviernos fríos. Hispanic fue el mejor cultivar de cebada como cultivo de cobertura y captura, mientras que Albacete como forraje. El triticale Titania alcanzó la posición más alta como cultiva de cobertura, captura y forraje. Las vezas Aitana y BGE014897 mostraron buenas aptitudes como abono verde y cultivo captura. El MCDA permitió la comparación entre especies y cultivares proporcionando información relevante para la selección y manejo de cultivos cubierta. En el estudio en rhizotrones tanto la mezcla de especies como la cebada alcanzaron mayor intensidad de raíces (RI) y profundidad (RD) que la veza, con valores alrededor de 150 cruces m-1 y 1.4 m respectivamente, comparados con 50 cruces m-1 y 0.9 m para la veza. En las capas más profundas del suelo, la asociación de cultivos mostró valores de RI ligeramente mayores que la cebada en monocultivo. La cebada y la asociación obtuvieron mayores valores de densidad de raíces (RLD) (200-600 m m-3) que la veza (25-130) entre 0.8 y 1.2 m de profundidad. Los niveles de N no mostraron efectos claros en RI, RD ó RLD, sin embargo, el incremento de N favoreció la proliferación de raíces de veza en la asociación en capas profundas del suelo, con un ratio cebada/veza situado entre 25 a N0 y 5 a N2. La absorción de N de la cebada se incrementó en la asociación a expensas de la veza (de ~100 a 200 mg planta-1). Las raíces de cebada en la asociación absorbieron también más nitrógeno marcado de las capas profundas del suelo (0.6 mg 15N planta-1) que en el monocultivo (0.3 mg 15N planta-1). ABSTRACT Cover crop characterization may allow comparing the suitability of different species to provide ecological services such as erosion control, nutrient recycling or fodder production. Different techniques to characterize plant canopy were studied under field conditions in order to establish a methodology for measuring and comparing cover crops canopies. A field trial was established in Madrid (central Spain) to determine the relationship between leaf area index (LAI) and ground cover (GC) in a grass, a legume and a crucifer crop. Twelve plots were sown with either barley (Hordeum vulgare L.), vetch (Vicia sativa L.), or rape (Brassica napus L.). On 10 sampling dates the LAI (both direct and LAI-2000 estimations), fraction intercepted of photosynthetically active radiation (FIPAR) and GC were measured. A two-year field experiment (October-April) was established in the same location to evaluate different species (Hordeum vulgare L., Secale cereale L., x Triticosecale Whim, Sinapis alba L., Vicia sativa L.) and cultivars (20) according to their suitability to be used as cover crops. GC was monitored through digital image analysis with 21 and 22 samples, and biomass measured 8 and 10 times, respectively for each season. A Gompertz model characterized ground cover until the decay observed after frosts, while biomass was fitted to Gompertz, logistic and linear-exponential equations. At the end of the experiment C, N, and fiber (neutral detergent, acid and lignin) contents, and the N fixed by the legumes were determined. Multicriteria decision analysis (MCDA) was applied in order to rank the species and cultivars according to their suitability to perform as cover crops in four different modalities: cover crop, catch crop, green manure and fodder. Intercropping legumes and non-legumes may affect the root growth and N uptake of both components in the mixture. The knowledge of how specific root systems affect the growth of the individual species is useful for understanding the interactions in intercrops as well as for planning cover cropping strategies. In a third trial rhizotron studies were combined with root extraction and species identification by microscopy and with studies of growth, N uptake and 15N uptake from deeper soil layers. The root interactions of root growth and N foraging were studied for two of the best ranked cultivars in the previous study: a barley (Hordeum vulgare L. cv. Hispanic) and a vetch (Vicia sativa L. cv. Aitana). N was added at 0 (N0), 50 (N1) and 150 (N2) kg N ha-1. As a result, linear and quadratic models fitted to the relationship between the GC and LAI for all of the crops, but they reached a plateau in the grass when the LAI > 4. Before reaching full cover, the slope of the linear relationship between both variables was within the range of 0.025 to 0.030. The LAI-2000 readings were linearly correlated with the LAI but they tended to overestimation. Corrections based on the clumping effect reduced the root mean square error of the estimated LAI from the LAI-2000 readings from 1.2 to less than 0.50 for the crucifer and the legume, but were not effective for barley. This determined that in the following studies only the GC and biomass were measured. In the second experiment, the grasses reached the highest ground cover (83- 99%) and biomass (1226-1928 g/m2) at the end of the experiment. The grasses had the highest C/N ratio (27-39) and dietary fiber (53-60%) and the lowest residue quality (~68%). The mustard presented high GC, biomass and N uptake in the warmer year with similarity to grasses, but low fodder capability in both years. The vetch presented the lowest N uptake (2.4-0.7 g N/m2) due to N fixation (9.8-1.6 g N/m2) and low biomass accumulation. The thermal time until reaching 30% ground cover was a good indicator of early coverage species. Variable quantification allowed finding variability among the species and provided information for further decisions involving cover crops selection and management. Aggregation of these variables through utility functions allowed ranking species and cultivars for each usage. Grasses were the most suitable for the cover crop, catch crop and fodder uses, while the vetches were the best as green manures. The mustard attained high ranks as cover and catch crop the first season, but the second decayed due to low performance in cold winters. Hispanic was the most suitable barley cultivar as cover and catch crop, and Albacete as fodder. The triticale Titania attained the highest rank as cover and catch crop and fodder. Vetches Aitana and BGE014897 showed good aptitudes as green manures and catch crops. MCDA allowed comparison among species and cultivars and might provide relevant information for cover crops selection and management. In the rhizotron study the intercrop and the barley attained slightly higher root intensity (RI) and root depth (RD) than the vetch, with values around 150 crosses m-1 and 1.4 m respectively, compared to 50 crosses m-1 and 0.9 m for the vetch. At deep soil layers, intercropping showed slightly larger RI values compared to the sole cropped barley. The barley and the intercropping had larger root length density (RLD) values (200-600 m m-3) than the vetch (25-130) at 0.8-1.2 m depth. The topsoil N supply did not show a clear effect on the RI, RD or RLD; however increasing topsoil N favored the proliferation of vetch roots in the intercropping at deep soil layers, with the barley/vetch root ratio ranging from 25 at N0 to 5 at N2. The N uptake of the barley was enhanced in the intercropping at the expense of the vetch (from ~100 mg plant-1 to 200). The intercropped barley roots took up more labeled nitrogen (0.6 mg 15N plant-1) than the sole-cropped barley roots (0.3 mg 15N plant-1) from deep layers.
Resumo:
Cover crop selection should be oriented to the achievement of specific agrosystem benefits. The covercrop, catch crop, green manure and fodder uses were identified as possible targets for selection. Theobjective was to apply multi-criteria decision analysis to evaluate different species (Hordeum vulgareL., Secale cereale L., ×Triticosecale Whim, Sinapis alba L., Vicia sativa L.) and cultivars according to theirsuitability to be used as cover crops in each of the uses. A field trial with 20 cultivars of the five specieswas conducted in Central Spain during two seasons (October?April). Measurements of ground cover, cropbiomass, N uptake, N derived from the atmosphere, C/N, dietary fiber content and residue quality werecollected. Aggregation of these variables through utility functions allowed ranking species and cultivarsfor each usage. Grasses were the most suitable for the cover crop, catch crop and fodder uses, while thevetches were the best as green manures. The mustard attained high ranks as cover and catch crop the firstseason, but the second decayed due to low performance in cold winters. Mustard and vetches obtainedworse rankings than grasses as fodder. Hispanic was the most suitable barley cultivar as cover and catchcrop, and Albacete as fodder. The triticale Titania attained the highest rank as cover and catch crop andfodder. Vetches Aitana and BGE014897 showed good aptitudes as green manures and catch crops. Thisanalysis allowed comparison among species and cultivars and might provide relevant information forcover crops selection and management.
Resumo:
Models may be useful tools to design efficient crop management practices provided they are able to accurately simulate the effect of weather variables on crop performance. The objective of this work was to accurately simulate the effects of temperature and day length on the rate of vegetative node expression, time to flowering, time to first pod, and time to physiological maturity of faba bean (Vicia faba L.) using the CROPGRO-Fababean model. Field experiments with multiple sowing dates were conducted in northwest Spain during 3 yr (17 sowing dates: 12 used for calibration and five for validation). Observed daily minimum and maximum air temperatures were within the range of ?9.0 and 39.2°C and observed photoperiods within 10.1 to 16.6 h. Optimization of thermal models to predict leaf appearance raised the base temperature (Tb) from the commonly used value of 0.0 to 3.9°C. In addition, photothermal models detected a small accelerating effect of day length on the rate of leaf appearance. Accurate prediction of the flowering date required incorporating day length, but the solved Tb approached negative values, close to ?4°C. All the reproductive phases after flowering were affected only by temperature, but postanthesis Tb was also mayor que0°C and approached values close to 8°C for time to first pod set and 5.5°C for time from first pod to physiological maturity. Our data indicated that cardinal base temperatures are not the same across all phenological phases.
Resumo:
This paper reports the effects produced on the organisms of the soil (plants, invertebrates and microorganisms), after the application of two types of poultry manure (sawdust and straw bed) on an agricultural land. The test was made using a terrestrial microcosm, Multi-Species Soil System (MS3) developed in INIA. There was no difference in the germination for any of the three species of plants considered in the study. The biomass was increased in the wheat (Triticum aestivum) coming from ground treated with both kinds of poultry manure. Oilseed rape (Brasica rapa) was not affected and regarding vetch (Vicia sativa) only straw poultry manure showed significant difference. For length only Vicia sativa was affected showing a reduction when straw was exposed to poultry manure. When the effect on invertebrates was studied, we observed a reduction in the number of worms during the test, especially from the ground control (13.7%), higher than in the ground with sawdust poultry manure (6.7%), whereas in the ground with straw poultry manure, there was no reduction. The biomass was affected and at the end of the test it was observed that while the reduction of worms in the ground control was about 48%, the number of those that were in the ground with sawdust poultry manure or straw poultry manure decreased by 41% and 22% respectively. Finally, the effects on microorganisms showed that the enzymatic activities: dehydrogenase (DH) and phosphatase and basal respiration rate increased at the beginning of the test, and the differences were statistically significant compared with the values of the control group. During the test, all these parameters decreased (except DH activities) but they were always higher than in the ground control. This is why it is possible to deduce that the contribution of poultry manure caused an improvement in the conditions of fertilization and also for the soil.
Resumo:
Soil salinity and salt leaching are a risk for sustainable agricultural production in many irrigated areas. This study was conducted over 3.5 years to determine how replacing the usual winter fallow with a cover crop (CC) affects soil salt accumulation and salt leaching in irrigated systems. Treatments studied during the period between summer crops were: barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Soil water content was monitored daily to a depth of 1.3 m and used with the numerical model WAVE to calculate drainage. Electrical conductivity (EC) was measured in soil solutions periodically, and in the soil saturated paste extracts before sowing CC and maize. Salt leaching was calculated multiplying drainage by total dissolved salts in the soil solution, and use to obtain a salt balance. Total salt leaching over the four winter fallow periods was 26 Mg ha−1, whereas less than 18 Mg ha−1 in the presence of a CC. Periods of salt gain occurred more often in the CC than in the fallow. By the end of the experiment, net salt losses occurred in all treatments, owing to occasional periods of heavy rainfall. The CC were more prone than the fallow to reduce soil salt accumulation during the early growth stages of the subsequent cash crop.
Resumo:
Soil salinity and salt leaching are a risk for sustainable agricultural production in many irrigated areas. This study was conducted over 3.5 years to determine how replacing the usual winter fallow with a cover crop (CC) affects soil salt accumulation and salt leaching in irrigated systems. Treatments studied during the period between summer crops were: barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Soil water content was monitored daily to a depth of 1.3 m and used with the numerical model WAVE to calculate drainage. Electrical conductivity (EC) was measured in soil solutions periodically, and in the soil saturated paste extracts before sowing CC and maize. Salt leaching was calculated multiplying drainage by total dissolved salts in the soil solution, and use to obtain a salt balance. Total salt leaching over the four winter fallow periods was 26 Mg ha−1, whereas less than 18 Mg ha−1 in the presence of a CC. Periods of salt gain occurred more often in the CC than in the fallow. By the end of the experiment, net salt losses occurred in all treatments, owing to occasional periods of heavy rainfall. The CC were more prone than the fallow to reduce soil salt accumulation during the early growth stages of the subsequent cash crop.
Resumo:
Nitrate leaching decreases crop available N and increases water contamination. Replacing fallow by cover crops (CC) is an alternative to reduce nitrate contamination, because it reduces overall drainage and soil mineral N accumulation. A study of the soil N and nitrate leaching was conducted during 5 years in a semi-arid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.), and fallow. Cover crops, sown in October, were killed by glyphosate application in March, allowing direct seeding of maize in April. All treatments were irrigated and fertilised following the same procedure. Soil water content was measured using capacity probes. Soil Nmin accumulation was determined along the soil profile before sowing and after harvesting maize. Soil analysis was conducted at six depths every 0.20m in each plot in samples from 0 to 1.2-m depth. The mechanistic water balance model WAVE was applied in order to calculate drainage and plant growth of the different treatments, and apply them to the N balance. We evaluated the water balance of this model using the daily soil water content measurements of this field trial. A new Matlab version of the model was evaluated as well. In this new version improvements were made in the solute transport module and crop module. In addition, this new version is more compatible with external modules for data processing, inverse calibration and uncertainty analysis than the previous Fortran version. The model showed that drainage during the irrigated period was minimized in all treatments, because irrigation water was adjusted to crop needs, leading to nitrate accumulation on the upper layers after maize harvest. Then, during the intercrop period, most of the nitrate leaching occurred. Cover crops usually led to a shorter drainage period, lower drainage water amount and lower nitrate leaching than the treatment with fallow. These effects resulted in larger nitrate accumulation in the upper layers of the soil after CC treatments.
Resumo:
La salinización en suelos de cultivos es un fenómeno muy relevante en el Sureste español que se produce por el empleo de aguas de riego salinas o de mala calidad. La lechuga (Lactuca sativa L.) es uno de los cultivos hortícolas de mayor implantación en esta área, destinándose principalmente para consumo en fresco y en productos cuarta gama. La salinidad puede afectar a la productividad y calidad del cultivo, sin embargo, en determinadas concentraciones investigaciones previas muestran que la salinidad puede favorecer la conservación de las hojas tras el corte, disminuyendo los procesos de degradación enzimática y el desarrollo de microorganismos. El objetivo del presente trabajo es evaluar la viabilidad de la imagen hiperespectral (400 a 1000 nm) para identificar la influencia del estrés salino en lechuga ?baby? recién recolectada. Para ello, se han adquirido imágenes de 40 hojas de diferentes lechugas sometidas a tres soluciones salinas diferentes y a una solución control. Dichas imágenes fueron sometidas a preprocesado de espectros (suavizado con el algoritmo Savitsky-Golay + normalización SNV), combinado con Análisis de Componentes Principales. Las imágenes virtuales de scores generadas con el modelo muestran diferencias progresivas en los valores asignados a los píxeles de las imágenes a medida que aumenta la concentración salina de la solución aplicada al cultivo. Se observa cómo la solución salina afecta a la hoja cambiando la coloración de las zonas medias, posiblemente debido a la concentración de solutos. La interpretación de los loadings de estos modelos permite conocer cómo afecta la salinidad al comportamiento espectral de las hojas. La imagen hiperespectral puede tener un gran potencial para identificar los límites de salinidad tolerados y evitar concentraciones tóxicas que afecten negativamente la vida útil de las hortalizas de hoja. Este conocimiento permitirá desarrollar índices multiespectrales capaces de identificar hojas afectadas por salinidad durante su cultivo y procesado postcosecha.
Resumo:
This study evaluates the effect of planting three cover crops (CCs) (barley, Hordeum vulgare L.; vetch, Vicia villosa L.; rape, Brassica napus L.) on the direct emission of N2O, CO2 and CH4 in the intercrop period and the impact of incorporating these CCs on the emission of greenhouse gas (GHG) from the forthcoming irrigated maize (Zea mays L.) crop. Vetch and barley were the CCs with the highest N2O and CO2 losses (75 and 47% increase compared with the control, respectively) in the fallow period. In all cases, fluxes of N2O were increased through N fertilization and the incorporation of barley and rape residues (40 and 17% increase, respectively). The combination of a high C:N ratio with the addition of an external source of mineral N increased the fluxes of N2O compared with − Ba and − Rp. The direct emissions of N2O were lower than expected for a fertilized crop (0.10% emission factor, EF) compared with other studies and the IPCC EF. These results are believed to be associated with a decreased NO3− pool due to highly denitrifying conditions and increased drainage. The fluxes of CO2 were in the range of other fertilized crops (i.e., 1118.71–1736.52 kg CO2–C ha− 1). The incorporation of CC residues enhanced soil respiration in the range of 21–28% for barley and rape although no significant differences between treatments were detected. Negative CH4 fluxes were measured and displayed an overall sink effect for all incorporated CC (mean values of − 0.12 and − 0.10 kg CH4–C ha− 1 for plots with and without incorporated CCs, respectively).
Resumo:
Rhizobium leguminosarum bv.viciae is able to establish nitrogen-fixing symbioses with legumes of the genera Pisum, Lens, Lathyrus and Vicia. Classic studies using trap plants (Laguerre et al., Young et al.) provided evidence that different plant hosts are able to select different rhizobial genotypes among those available in a given soil. However, these studies were necessarily limited by the paucity of relevant biodiversity markers. We have now reappraised this problem with the help of genomic tools. A well-characterized agricultural soil (INRA Bretennieres) was used as source of rhizobia. Plants of Pisum sativum, Lens culinaris, Vicia sativa and V. faba were used as traps. Isolates from 100 nodules were pooled, and DNA from each pool was sequenced (BGI-Hong Kong; Illumina Hiseq 2000, 500 bp PE libraries, 100 bp reads, 12 Mreads). Reads were quality filtered (FastQC, Trimmomatic), mapped against reference R. leguminosarum genomes (Bowtie2, Samtools), and visualized (IGV). An important fraction of the filtered reads were not recruited by reference genomes, suggesting that plant isolates contain genes that are not present in the reference genomes. For this study, we focused on three conserved genomic regions: 16S-23S rDNA, atpD and nodDABC, and a Single Nucleotide Polymorphism (SNP) analysis was carried out with meta / multigenomes from each plant. Although the level of polymorphism varied (lowest in the rRNA region), polymorphic sites could be identified that define the specific soil population vs. reference genomes. More importantly, a plant-specific SNP distribution was observed. This could be confirmed with many other regions extracted from the reference genomes (data not shown). Our results confirm at the genomic level previous observations regarding plant selection of specific genotypes. We expect that further, ongoing comparative studies on differential meta / multigenomic sequences will identify specific gene components of the plant-selected genotypes
Resumo:
Legumes establish a root-nodule symbiosis with soil bacteria collectively known as rhizobia. This symbiosis allows legumes to benefit from the nitrogen fixation capabilities of rhizobia and thus to grow in the absence of any fixed nitrogen source. This is especially relevant for Agriculture, where intensive plant growth depletes soils of useable, fixed nitrogen sources. One of the main features of the root nodule symbiosis is its specificity. Different rhizobia are able to nodulate different legumes. Rhizobium leguminosarum bv. viciae is able to establish an effective symbiosis with four different plant genera (Pisum, Lens, Vicia, Lathyrus), and any given isolate will nodulate any of the four plant genera. A population genomics study with rhizobia isolated from P. sativum, L. culinaris, V. sativa or V. faba, all originating in the same soil, showed that plants select specific genotypes from those available in that soil. This was demonstrated at the genome-wide level, but also for specific genes. Accelerated mesocosm studies with successive plant cultures provided additional evidence on this plant selection and on the nature of the genotypes selected. Finally, representatives from the major rhizobial genotypes isolated from these plants allowed characterization of the size and nature of the respective pangenome and specific genome compartments. These were compared to the different genotypes ?symbiotic and non-symbiotic?present in rhizobial populations isolated directly from the soil without plant intervention.
Resumo:
Rhizobium leguminosarum bv viciae (Rlv) is a soil bacterium able to establish specific root-nodule symbioses with legumes of four different genera: Pisum, Vicia, Lens and Lathyrus. Rlv isolates from nodules of any of these legumes can nodulate any of them; however, it has been shown that plants select specific rhizobial genotypes from those present in the soil (1,2). We have previously shown this at the genomic level by following a population genomics approach. Pool genomic sequences from 100 isolates from each of four plant species: P. sativum, L. culinaris, V. faba and V. sativa, show different, specific profiles at the single nucleotide polymorphism (SNP) level for relevant genes. In this work, the extent of Rlv selection from a well-characterized soil population by different legume plant hosts: P. sativum, L. culinaris, V. faba and V. sativa, after a medium-term mesocosm study is described. Direct soil isolates from each of these mesocosm studies have been tested for specific rhizobial genes (glnII and fnrN) and symbiotic genes (nodC and nifH). Different populations were characterized further by Sanger sequencing of both the rpoB phylogenetic marker gene and the symbiotic genes nodC and nifH. The distribution and size of the rhizobial population for each legume host showed changes during the medium-term mesocosm study. Particularly, a non-symbiotic group of rhizobia was enriched by all four hosts, in contrast to the symbiotic rhizobia profile, which was specific for each legume plant host.