8 resultados para Vhdl

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La difusión de TV3D actual utiliza formatos como el Side-by-Side o Top-and-Bottom, en los que cada par de imágenes, correspondiente a las vistas de los ojos derecho e izquierdo, se encapsula con la mitad de la resolución espacial en una sola imagen. Estas imágenes se muestran de manera casi simultánea de forma que el ojo humano compone una imagen con profundidad que se asemeja a la visión binocular natural. Desde hace un par de años las principales plataformas de televisión han empezado a crear canales con contenido 3D. La televisión 3D (TV3D) se ha introducido en los hogares gracias a los televisores estereoscópicos. Estos televisores, que son compatibles con los formatos antes mencionados, extraen de cada imagen sus dos vistas, recuperan la resolución original y presentan cada vista alternativamente en la pantalla, generando al mismo tiempo una señal de sincronismo para las gafas activas, creando de esta forma la sensación tridimensional de las imágenes. En este PFC se pretende realizar el diseño VHDL de un cambiador de formato que genere en tiempo real la secuencia de imágenes correspondiente a los ojos derecho e izquierdo, con resolución completa, a partir de una secuencia codificada en formato tipo Top-and-Bottom y el banco de test para su prueba. Este circuito se implementará como un periférico del procesador NIOS II de Altera. El diseño podría utilizarse como parte de un sistema que permita la visualización de las actuales emisiones de televisión 3D en un televisor convencional. La tecnología de referencia que se utilizará serán las FPGAs, más concretamente la tarjeta Cyclone III FPGA Starter Kit (EP3C25 FPGA) de Altera, junto a una tarjeta de ampliación de Microtronix con entrada y salida HDMI para video y audio. Además se pretende crear la documentación necesaria para el desarrollo de futuros trabajos relacionados con la televisión 3D. ABSTRACT Current TV3D broadcasting uses formats as Side-by-Side or Top-and-Bottom, where every single pair of images, corresponding to left and right eyes views, are encapsulated with half spatial resolution in one single image. These images are almost simultaneously displayed so that the human eye forms an image with depth resembling naturally binocular vision. From a couple of years the major TV platforms have begun to create 3D content channels. 3D Television (3DTV) has been introduced in homes through stereoscopic televisions. These televisions, which are compatible with the above formats, each image is extracted from the two views, and recover the original resolution and displays alternately each view in screen, while generating a synchronization signal for active glasses, thereby creating the three-dimensional sensation of the images. The main objective in this PFC is to make the design of an exchanger VHDL format in real time to generate the image sequence corresponding to the right and left eyes, with full resolution from an encoded sequence type format Top-and-Bottom and test bench for testing. This circuit is implemented as a Altera NIOS II processor peripheral.The design could be used as part of a system enabling the display of current television broadcasts 3D on a conventional television. The reference technology that will be use are FPGAs, more specifically Cyclone III FPGA Starter Card Kit (EP3C25 FPGA) Altera, along with an expansion card Microtronix with HDMI input and output video and audio. It also aims to create documentation for the development of future works related to 3D TV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se va a realizar un estudio de la codificación de imágenes sobre el estándar HEVC (high-effiency video coding). El proyecto se va a centrar en el codificador híbrido, más concretamente sobre la aplicación de la transformada inversa del coseno que se realiza tanto en codificador como en el descodificador. La necesidad de codificar vídeo surge por la aparición de la secuencia de imágenes como señales digitales. El problema principal que tiene el vídeo es la cantidad de bits que aparecen al realizar la codificación. Como consecuencia del aumento de la calidad de las imágenes, se produce un crecimiento exponencial de la cantidad de información a codificar. La utilización de las transformadas al procesamiento digital de imágenes ha aumentado a lo largo de los años. La transformada inversa del coseno se ha convertido en el método más utilizado en el campo de la codificación de imágenes y video. Las ventajas de la transformada inversa del coseno permiten obtener altos índices de compresión a muy bajo coste. La teoría de las transformadas ha mejorado el procesamiento de imágenes. En la codificación por transformada, una imagen se divide en bloques y se identifica cada imagen a un conjunto de coeficientes. Esta codificación se aprovecha de las dependencias estadísticas de las imágenes para reducir la cantidad de datos. El proyecto realiza un estudio de la evolución a lo largo de los años de los distintos estándares de codificación de video. Se analiza el codificador híbrido con más profundidad así como el estándar HEVC. El objetivo final que busca este proyecto fin de carrera es la realización del núcleo de un procesador específico para la ejecución de la transformada inversa del coseno en un descodificador de vídeo compatible con el estándar HEVC. Es objetivo se logra siguiendo una serie de etapas, en las que se va añadiendo requisitos. Este sistema permite al diseñador hardware ir adquiriendo una experiencia y un conocimiento más profundo de la arquitectura final. ABSTRACT. A study about the codification of images based on the standard HEVC (high-efficiency video coding) will be developed. The project will be based on the hybrid encoder, in particular, on the application of the inverse cosine transform, which is used for the encoder as well as for the decoder. The necessity of encoding video arises because of the appearance of the sequence of images as digital signals. The main problem that video faces is the amount of bits that appear when making the codification. As a consequence of the increase of the quality of the images, an exponential growth on the quantity of information that should be encoded happens. The usage of transforms to the digital processing of images has increased along the years. The inverse cosine transform has become the most used method in the field of codification of images and video. The advantages of the inverse cosine transform allow to obtain high levels of comprehension at a very low price. The theory of the transforms has improved the processing of images. In the codification by transform, an image is divided in blocks and each image is identified to a set of coefficients. This codification takes advantage of the statistic dependence of the images to reduce the amount of data. The project develops a study of the evolution along the years of the different standards in video codification. In addition, the hybrid encoder and the standard HEVC are analyzed more in depth. The final objective of this end of degree project is the realization of the nucleus from a specific processor for the execution of the inverse cosine transform in a decoder of video that is compatible with the standard HEVC. This objective is reached following a series of stages, in which requirements are added. This system allows the hardware designer to acquire a deeper experience and knowledge of the final architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document is a summary of the Bachelor thesis titled “VHDL-Based System Design of a Cognitive Sensorimotor Loop (CSL) for Haptic Human-Machine Interaction (HMI)” written by Pablo de Miguel Morales, Electronics Engineering student at the Universidad Politécnica de Madrid (UPM Madrid, Spain) during an Erasmus+ Exchange Program at the Beuth Hochschule für Technik (BHT Berlin, Germany). The tutor of this project is Dr. Prof. Hild. This project has been developed inside the Neurobotics Research Laboratory (NRL) in close collaboration with Benjamin Panreck, a member of the NRL, and another exchange student from the UPM Pablo Gabriel Lezcano. For a deeper comprehension of the content of the thesis, a deeper look in the document is needed as well as the viewing of the videos and the VHDL design. In the growing field of automation, a large amount of workforce is dedicated to improve, adapt and design motor controllers for a wide variety of applications. In the specific field of robotics or other machinery designed to interact with humans or their environment, new needs and technological solutions are often being discovered due to the existing, relatively unexplored new scenario it is. The project consisted of three main parts: Two VHDL-based systems and one short experiment on the haptic perception. Both VHDL systems are based on a Cognitive Sensorimotor Loop (CSL) which is a control loop designed by the NRL and mainly developed by Dr. Prof. Hild. The CSL is a control loop whose main characteristic is the fact that it does not use any external sensor to measure the speed or position of the motor but the motor itself. The motor always generates a voltage that is proportional to its angular speed so it does not need calibration. This method is energy efficient and simplifies control loops in complex systems. The first system, named CSL Stay In Touch (SIT), consists in a one DC motor system controller by a FPGA Board (Zynq ZYBO 7000) whose aim is to keep contact with any external object that touches its Sensing Platform in both directions. Apart from the main behavior, three features (Search Mode, Inertia Mode and Return Mode) have been designed to enhance the haptic interaction experience. Additionally, a VGA-Screen is also controlled by the FPGA Board for the monitoring of the whole system. This system has been completely developed, tested and improved; analyzing its timing and consumption properties. The second system, named CSL Fingerlike Mechanism (FM), consists in a fingerlike mechanical system controlled by two DC motors (Each controlling one part of the finger). The behavior is similar to the first system but in a more complex structure. This system was optional and not part of the original objectives of the thesis and it could not be properly finished and tested due to the lack of time. The haptic perception experiment was an experiment conducted to have an insight into the complexity of human haptic perception in order to implement this knowledge into technological applications. The experiment consisted in testing the capability of the subjects to recognize different objects and shapes while being blindfolded and with their ears covered. Two groups were done, one had full haptic perception while the other had to explore the environment with a plastic piece attached to their finger to create a haptic handicap. The conclusion of the thesis was that a haptic system based only on a CSL-based system is not enough to retrieve valuable information from the environment and that other sensors are needed (temperature, pressure, etc.) but that a CSL-based system is very useful to control the force applied by the system to interact with haptic sensible surfaces such as skin or tactile screens. RESUMEN. Este documento es un resumen del proyecto fin de grado titulado “VHDL-Based System Design of a Cognitive Sensorimotor Loop (CSL) for Haptic Human-Machine Interaction (HMI)” escrito por Pablo de Miguel, estudiante de Ingeniería Electrónica de Comunicaciones en la Universidad Politécnica de Madrid (UPM Madrid, España) durante un programa de intercambio Erasmus+ en la Beuth Hochschule für Technik (BHT Berlin, Alemania). El tutor de este proyecto ha sido Dr. Prof. Hild. Este proyecto se ha desarrollado dentro del Neurorobotics Research Laboratory (NRL) en estrecha colaboración con Benjamin Panreck (un miembro del NRL) y con Pablo Lezcano (Otro estudiante de intercambio de la UPM). Para una comprensión completa del trabajo es necesaria una lectura detenida de todo el documento y el visionado de los videos y análisis del diseño VHDL incluidos en el CD adjunto. En el creciente sector de la automatización, una gran cantidad de esfuerzo está dedicada a mejorar, adaptar y diseñar controladores de motor para un gran rango de aplicaciones. En el campo específico de la robótica u otra maquinaria diseñada para interactuar con los humanos o con su entorno, nuevas necesidades y soluciones tecnológicas se siguen desarrollado debido al relativamente inexplorado y nuevo escenario que supone. El proyecto consta de tres partes principales: Dos sistemas basados en VHDL y un pequeño experimento sobre la percepción háptica. Ambos sistemas VHDL están basados en el Cognitive Sesnorimotor Loop (CSL) que es un lazo de control creado por el NRL y cuyo desarrollador principal ha sido Dr. Prof. Hild. El CSL es un lazo de control cuya principal característica es la ausencia de sensores externos para medir la velocidad o la posición del motor, usando el propio motor como sensor. El motor siempre genera un voltaje proporcional a su velocidad angular de modo que no es necesaria calibración. Este método es eficiente en términos energéticos y simplifica los lazos de control en sistemas complejos. El primer sistema, llamado CSL Stay In Touch (SIT), consiste en un sistema formado por un motor DC controlado por una FPGA Board (Zynq ZYBO 7000) cuyo objetivo es mantener contacto con cualquier objeto externo que toque su plataforma sensible en ambas direcciones. Aparte del funcionamiento básico, tres modos (Search Mode, Inertia Mode y Return Mode) han sido diseñados para mejorar la interacción. Adicionalmente, se ha diseñado el control a través de la FPGA Board de una pantalla VGA para la monitorización de todo el sistema. El sistema ha sido totalmente desarrollado, testeado y mejorado; analizando su propiedades de timing y consumo energético. El segundo sistema, llamado CSL Fingerlike Mechanism (FM), consiste en un mecanismo similar a un dedo controlado por dos motores DC (Cada uno controlando una falange). Su comportamiento es similar al del primer sistema pero con una estructura más compleja. Este sistema no formaba parte de los objetivos iniciales del proyecto y por lo tanto era opcional. No pudo ser plenamente desarrollado debido a la falta de tiempo. El experimento de percepción háptica fue diseñado para profundizar en la percepción háptica humana con el objetivo de aplicar este conocimiento en aplicaciones tecnológicas. El experimento consistía en testear la capacidad de los sujetos para reconocer diferentes objetos, formas y texturas en condiciones de privación del sentido del oído y la vista. Se crearon dos grupos, en uno los sujetos tenían plena percepción háptica mientras que en el otro debían interactuar con los objetos a través de una pieza de plástico para generar un hándicap háptico. La conclusión del proyecto fue que un sistema háptico basado solo en sistemas CSL no es suficiente para recopilar información valiosa del entorno y que debe hacer uso de otros sensores (temperatura, presión, etc.). En cambio, un sistema basado en CSL es idóneo para el control de la fuerza aplicada por el sistema durante la interacción con superficies hápticas sensibles tales como la piel o pantallas táctiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of a Sensorimotor Algorithm Able to Deal with Unforeseen Pushes and Its Implementation Based on VHDL is the title of my thesis which concludes my Bachelor Degree in the Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación of the Universidad Politécnica de Madrid. It encloses the overall work I did in the Neurorobotics Research Laboratory from the Beuth Hochschule für Technik Berlin during my ERASMUS year in 2015. This thesis is focused on the field of robotics, specifically an electronic circuit called Cognitive Sensorimotor Loop (CSL) and its control algorithm based on VHDL hardware description language. The reason that makes the CSL special resides in its ability to operate a motor both as a sensor and an actuator. This way, it is possible to achieve a balanced position in any of the robot joints (e.g. the robot manages to stand) without needing any conventional sensor. In other words, the back electromotive force (EMF) induced by the motor coils is measured and the control algorithm responds depending on its magnitude. The CSL circuit contains mainly an analog-to-digital converter (ADC) and a driver. The ADC consists on a delta-sigma modulation which generates a series of bits with a certain percentage of 1's and 0's, proportional to the back EMF. The control algorithm, running in a FPGA, processes the bit frame and outputs a signal for the driver. This driver, which has an H bridge topology, gives the motor the ability to rotate in both directions while it's supplied with the power needed. The objective of this thesis is to document the experiments and overall work done on push ignoring contractive sensorimotor algorithms, meaning sensorimotor algorithms that ignore large magnitude forces (compared to gravity) applied in a short time interval on a pendulum system. This main objective is divided in two sub-objectives: (1) developing a system based on parameterized thresholds and (2) developing a system based on a push bypassing filter. System (1) contains a module that outputs a signal which blocks the main Sensorimotor algorithm when a push is detected. This module has several different parameters as inputs e.g. the back EMF increment to consider a force as a push or the time interval between samples. System (2) consists on a low-pass Infinite Impulse Response digital filter. It cuts any frequency considered faster than a certain push oscillation. This filter required an intensive study on how to implement some functions and data types (fixed or floating point data) not supported by standard VHDL packages. Once this was achieved, the next challenge was to simplify the solution as much as possible, without using non-official user made packages. Both systems behaved with a series of interesting advantages and disadvantages for the elaboration of the document. Stability, reaction time, simplicity or computational load are one of the many factors to be studied in the designed systems. RESUMEN. Development of a Sensorimotor Algorithm Able to Deal with Unforeseen Pushes and Its Implementation Based on VHDL es un Proyecto de Fin de Grado (PFG) que concluye mis estudios en la Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación de la Universidad Politécnica de Madrid. En él se documenta el trabajo de investigación que realicé en el Neurorobotics Research Laboratory de la Beuth Hochschule für Technik Berlin durante el año 2015 mediante el programa de intercambio ERASMUS. Este PFG se centra en el campo de la robótica y en concreto en un circuito electrónico llamado Cognitive Sensorimotor Loop (CSL) y su algoritmo de control basado en lenguaje de modelado hardware VHDL. La particularidad del CSL reside en que se consigue que un motor haga las veces tanto de sensor como de actuador. De esta manera es posible que las articulaciones de un robot alcancen una posición de equilibrio (p.ej. el robot se coloca erguido) sin la necesidad de sensores en el sentido estricto de la palabra. Es decir, se mide la propia fuerza electromotriz (FEM) inducida sobre el motor y el algoritmo responde de acuerdo a su magnitud. El circuito CSL se compone de un convertidor analógico-digital (ADC) y un driver. El ADC consiste en un modulador sigma-delta, que genera una serie de bits con un porcentaje de 1's y 0's determinado, en proporción a la magnitud de la FEM inducida. El algoritmo de control, que se ejecuta en una FPGA, procesa esta cadena de bits y genera una señal para el driver. El driver, que posee una topología en puente H, provee al motor de la potencia necesaria y le otorga la capacidad de rotar en cualquiera de las dos direcciones. El objetivo de este PFG es documentar los experimentos y en general el trabajo realizado en algoritmos Sensorimotor que puedan ignorar fuerzas de gran magnitud (en comparación con la gravedad) y aplicadas en una corta ventana de tiempo. En otras palabras, ignorar empujones conservando el comportamiento original frente a la gravedad. Para ello se han desarrollado dos sistemas: uno basado en umbrales parametrizados (1) y otro basado en un filtro de corte ajustable (2). El sistema (1) contiene un módulo que, en el caso de detectar un empujón, genera una señal que bloquea el algoritmo Sensorimotor. Este módulo recibe diferentes parámetros como el incremento necesario de la FEM para que se considere un empujón o la ventana de tiempo para que se considere la existencia de un empujón. El sistema (2) consiste en un filtro digital paso-bajo de respuesta infinita que corta cualquier variación que considere un empujón. Para crear este filtro se requirió un estudio sobre como implementar ciertas funciones y tipos de datos (coma fija o flotante) no soportados por las librerías básicas de VHDL. Tras esto, el objetivo fue simplificar al máximo la solución del problema, sin utilizar paquetes de librerías añadidos. En ambos sistemas aparecen una serie de ventajas e inconvenientes de interés para el documento. La estabilidad, el tiempo de reacción, la simplicidad o la carga computacional son algunas de las muchos factores a estudiar en los sistemas diseñados. Para concluir, también han sido documentadas algunas incorporaciones a los sistemas: una interfaz visual en VGA, un módulo que compensa el offset del ADC o la implementación de una batería de faders MIDI entre otras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente proyecto final de carrera titulado “Modelado de alto nivel con SystemC” tiene como objetivo principal el modelado de algunos módulos de un codificador de vídeo MPEG-2 utilizando el lenguaje de descripción de sistemas igitales SystemC con un nivel de abstracción TLM o Transaction Level Modeling. SystemC es un lenguaje de descripción de sistemas digitales basado en C++. En él hay un conjunto de rutinas y librerías que implementan tipos de datos, estructuras y procesos especiales para el modelado de sistemas digitales. Su descripción se puede consultar en [GLMS02] El nivel de abstracción TLM se caracteriza por separar la comunicación entre los módulos de su funcionalidad. Este nivel de abstracción hace un mayor énfasis en la funcionalidad de la comunicación entre los módulos (de donde a donde van datos) que la implementación exacta de la misma. En los documentos [RSPF] y [HG] se describen el TLM y un ejemplo de implementación. La arquitectura del modelo se basa en el codificador MVIP-2 descrito en [Gar04], de dicho modelo, los módulos implementados son: · IVIDEOH: módulo que realiza un filtrado del vídeo de entrada en la dimensión horizontal y guarda en memoria el video filtrado. · IVIDEOV: módulo que lee de la memoria el vídeo filtrado por IVIDEOH, realiza el filtrado en la dimensión horizontal y escribe el video filtrado en memoria. · DCT: módulo que lee el video filtrado por IVIDEOV, hace la transformada discreta del coseno y guarda el vídeo transformado en la memoria. · QUANT: módulo que lee el video transformado por DCT, lo cuantifica y guarda el resultado en la memoria. · IQUANT: módulo que lee el video cuantificado por QUANT, realiza la cuantificación inversa y guarda el resultado en memoria. · IDCT: módulo que lee el video procesado por IQUANT, realiza la transformada inversa del coseno y guarda el resultado en memoria. · IMEM: módulo que hace de interfaz entre los módulos anteriores y la memoria. Gestiona las peticiones simultáneas de acceso a la memoria y asegura el acceso exclusivo a la memoria en cada instante de tiempo. Todos estos módulos aparecen en gris en la siguiente figura en la que se muestra la arquitectura del modelo: Figura 1. Arquitectura del modelo (VER PDF DEL PFC) En figura también aparecen unos módulos en blanco, dichos módulos son de pruebas y se han añadido para realizar simulaciones y probar los módulos del modelo: · CAMARA: módulo que simula una cámara en blanco y negro, lee la luminancia de un fichero de vídeo y lo envía al modelo a través de una FIFO. · FIFO: hace de interfaz entre la cámara y el modelo, guarda los datos que envía la cámara hasta que IVIDEOH los lee. · CONTROL: módulo que se encarga de controlar los módulos que procesan el vídeo, estos le indican cuando terminan de procesar un frame de vídeo y este módulo se encarga de iniciar los módulos que sean necesarios para seguir con la codificación. Este módulo se encarga del correcto secuenciamiento de los módulos procesadores de vídeo. · RAM: módulo que simula una memoria RAM, incluye un retardo programable en el acceso. Para las pruebas también se han generado ficheros de vídeo con el resultado de cada módulo procesador de vídeo, ficheros con mensajes y un fichero de trazas en el que se muestra el secuenciamiento de los procesadores. Como resultado del trabajo en el presente PFC se puede concluir que SystemC permite el modelado de sistemas digitales con bastante sencillez (hace falta conocimientos previos de C++ y programación orientada objetos) y permite la realización de modelos con un nivel de abstracción mayor a RTL, el habitual en Verilog y VHDL, en el caso del presente PFC, el TLM. ABSTRACT This final career project titled “High level modeling with SystemC” have as main objective the modeling of some of the modules of an MPEG-2 video coder using the SystemC digital systems description language at the TLM or Transaction Level Modeling abstraction level. SystemC is a digital systems description language based in C++. It contains routines and libraries that define special data types, structures and process to model digital systems. There is a complete description of the SystemC language in the document [GLMS02]. The main characteristic of TLM abstraction level is that it separates the communication among modules of their functionality. This abstraction level puts a higher emphasis in the functionality of the communication (from where to where the data go) than the exact implementation of it. The TLM and an example are described in the documents [RSPF] and [HG]. The architecture of the model is based in the MVIP-2 video coder (described in the document [Gar04]) The modeled modules are: · IVIDEOH: module that filter the video input in the horizontal dimension. It saves the filtered video in the memory. · IVIDEOV: module that read the IVIDEOH filtered video, filter it in the vertical dimension and save the filtered video in the memory. · DCT: module that read the IVIDEOV filtered video, do the discrete cosine transform and save the transformed video in the memory. · QUANT: module that read the DCT transformed video, quantify it and save the quantified video in the memory. · IQUANT: module that read the QUANT processed video, do the inverse quantification and save the result in the memory. · IDCT: module that read the IQUANT processed video, do the inverse cosine transform and save the result in the memory. · IMEM: this module is the interface between the modules described previously and the memory. It manage the simultaneous accesses to the memory and ensure an unique access at each instant of time All this modules are included in grey in the following figure (SEE PDF OF PFC). This figure shows the architecture of the model: Figure 1. Architecture of the model This figure also includes other modules in white, these modules have been added to the model in order to simulate and prove the modules of the model: · CAMARA: simulates a black and white video camera, it reads the luminance of a video file and sends it to the model through a FIFO. · FIFO: is the interface between the camera and the model, it saves the video data sent by the camera until the IVIDEOH module reads it. · CONTROL: controls the modules that process the video. These modules indicate the CONTROL module when they have finished the processing of a video frame. The CONTROL module, then, init the necessary modules to continue with the video coding. This module is responsible of the right sequence of the video processing modules. · RAM: it simulates a RAM memory; it also simulates a programmable delay in the access to the memory. It has been generated video files, text files and a trace file to check the correct function of the model. The trace file shows the sequence of the video processing modules. As a result of the present final career project, it can be deduced that it is quite easy to model digital systems with SystemC (it is only needed previous knowledge of C++ and object oriented programming) and it also allow the modeling with a level of abstraction higher than the RTL used in Verilog and VHDL, in the case of the present final career project, the TLM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con el auge del Cloud Computing, las aplicaciones de proceso de datos han sufrido un incremento de demanda, y por ello ha cobrado importancia lograr m�ás eficiencia en los Centros de Proceso de datos. El objetivo de este trabajo es la obtenci�ón de herramientas que permitan analizar la viabilidad y rentabilidad de diseñar Centros de Datos especializados para procesamiento de datos, con una arquitectura, sistemas de refrigeraci�ón, etc. adaptados. Algunas aplicaciones de procesamiento de datos se benefician de las arquitecturas software, mientras que en otras puede ser m�ás eficiente un procesamiento con arquitectura hardware. Debido a que ya hay software con muy buenos resultados en el procesamiento de grafos, como el sistema XPregel, en este proyecto se realizará una arquitectura hardware en VHDL, implementando el algoritmo PageRank de Google de forma escalable. Se ha escogido este algoritmo ya que podr��á ser m�ás eficiente en arquitectura hardware, debido a sus características concretas que se indicaráan m�ás adelante. PageRank sirve para ordenar las p�áginas por su relevancia en la web, utilizando para ello la teorí��a de grafos, siendo cada página web un vértice de un grafo; y los enlaces entre páginas, las aristas del citado grafo. En este proyecto, primero se realizará un an�álisis del estado de la técnica. Se supone que la implementaci�ón en XPregel, un sistema de procesamiento de grafos, es una de las m�ás eficientes. Por ello se estudiará esta �ultima implementaci�ón. Sin embargo, debido a que Xpregel procesa, en general, algoritmos que trabajan con grafos; no tiene en cuenta ciertas caracterí��sticas del algoritmo PageRank, por lo que la implementaci�on no es �optima. Esto es debido a que en PageRank, almacenar todos los datos que manda un mismo v�értice es un gasto innecesario de memoria ya que todos los mensajes que manda un vértice son iguales entre sí e iguales a su PageRank. Se realizará el diseño en VHDL teniendo en cuenta esta caracter��ística del citado algoritmo,evitando almacenar varias veces los mensajes que son iguales. Se ha elegido implementar PageRank en VHDL porque actualmente las arquitecturas de los sistemas operativos no escalan adecuadamente. Se busca evaluar si con otra arquitectura se obtienen mejores resultados. Se realizará un diseño partiendo de cero, utilizando la memoria ROM de IPcore de Xillinx (Software de desarrollo en VHDL), generada autom�áticamente. Se considera hacer cuatro tipos de módulos para que as�� el procesamiento se pueda hacer en paralelo. Se simplificar�á la estructura de XPregel con el fin de intentar aprovechar la particularidad de PageRank mencionada, que hace que XPregel no le saque el m�aximo partido. Despu�és se escribirá el c�ódigo, realizando una estructura escalable, ya que en la computación intervienen millones de páginas web. A continuación, se sintetizar�á y se probará el código en una FPGA. El �ultimo paso será una evaluaci�ón de la implementaci�ón, y de posibles mejoras en cuanto al consumo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el mundo actual las aplicaciones basadas en sistemas biométricos, es decir, aquellas que miden las señales eléctricas de nuestro organismo, están creciendo a un gran ritmo. Todos estos sistemas incorporan sensores biomédicos, que ayudan a los usuarios a controlar mejor diferentes aspectos de la rutina diaria, como podría ser llevar un seguimiento detallado de una rutina deportiva, o de la calidad de los alimentos que ingerimos. Entre estos sistemas biométricos, los que se basan en la interpretación de las señales cerebrales, mediante ensayos de electroencefalografía o EEG están cogiendo cada vez más fuerza para el futuro, aunque están todavía en una situación bastante incipiente, debido a la elevada complejidad del cerebro humano, muy desconocido para los científicos hasta el siglo XXI. Por estas razones, los dispositivos que utilizan la interfaz cerebro-máquina, también conocida como BCI (Brain Computer Interface), están cogiendo cada vez más popularidad. El funcionamiento de un sistema BCI consiste en la captación de las ondas cerebrales de un sujeto para después procesarlas e intentar obtener una representación de una acción o de un pensamiento del individuo. Estos pensamientos, correctamente interpretados, son posteriormente usados para llevar a cabo una acción. Ejemplos de aplicación de sistemas BCI podrían ser mover el motor de una silla de ruedas eléctrica cuando el sujeto realice, por ejemplo, la acción de cerrar un puño, o abrir la cerradura de tu propia casa usando un patrón cerebral propio. Los sistemas de procesamiento de datos están evolucionando muy rápido con el paso del tiempo. Los principales motivos son la alta velocidad de procesamiento y el bajo consumo energético de las FPGAs (Field Programmable Gate Array). Además, las FPGAs cuentan con una arquitectura reconfigurable, lo que las hace más versátiles y potentes que otras unidades de procesamiento como las CPUs o las GPUs.En el CEI (Centro de Electrónica Industrial), donde se lleva a cabo este TFG, se dispone de experiencia en el diseño de sistemas reconfigurables en FPGAs. Este TFG es el segundo de una línea de proyectos en la cual se busca obtener un sistema capaz de procesar correctamente señales cerebrales, para llegar a un patrón común que nos permita actuar en consecuencia. Más concretamente, se busca detectar cuando una persona está quedándose dormida a través de la captación de unas ondas cerebrales, conocidas como ondas alfa, cuya frecuencia está acotada entre los 8 y los 13 Hz. Estas ondas, que aparecen cuando cerramos los ojos y dejamos la mente en blanco, representan un estado de relajación mental. Por tanto, este proyecto comienza como inicio de un sistema global de BCI, el cual servirá como primera toma de contacto con el procesamiento de las ondas cerebrales, para el posterior uso de hardware reconfigurable sobre el cual se implementarán los algoritmos evolutivos. Por ello se vuelve necesario desarrollar un sistema de procesamiento de datos en una FPGA. Estos datos se procesan siguiendo la metodología de procesamiento digital de señales, y en este caso se realiza un análisis de la frecuencia utilizando la transformada rápida de Fourier, o FFT. Una vez desarrollado el sistema de procesamiento de los datos, se integra con otro sistema que se encarga de captar los datos recogidos por un ADC (Analog to Digital Converter), conocido como ADS1299. Este ADC está especialmente diseñado para captar potenciales del cerebro humano. De esta forma, el sistema final capta los datos mediante el ADS1299, y los envía a la FPGA que se encarga de procesarlos. La interpretación es realizada por los usuarios que analizan posteriormente los datos procesados. Para el desarrollo del sistema de procesamiento de los datos, se dispone primariamente de dos plataformas de estudio, a partir de las cuales se captarán los datos para después realizar el procesamiento: 1. La primera consiste en una herramienta comercial desarrollada y distribuida por OpenBCI, proyecto que se dedica a la venta de hardware para la realización de EEG, así como otros ensayos. Esta herramienta está formada por un microprocesador, un módulo de memoria SD para el almacenamiento de datos, y un módulo de comunicación inalámbrica que transmite los datos por Bluetooth. Además cuenta con el mencionado ADC ADS1299. Esta plataforma ofrece una interfaz gráfica que sirve para realizar la investigación previa al diseño del sistema de procesamiento, al permitir tener una primera toma de contacto con el sistema. 2. La segunda plataforma consiste en un kit de evaluación para el ADS1299, desde la cual se pueden acceder a los diferentes puertos de control a través de los pines de comunicación del ADC. Esta plataforma se conectará con la FPGA en el sistema integrado. Para entender cómo funcionan las ondas más simples del cerebro, así como saber cuáles son los requisitos mínimos en el análisis de ondas EEG se realizaron diferentes consultas con el Dr Ceferino Maestu, neurofisiólogo del Centro de Tecnología Biomédica (CTB) de la UPM. Él se encargó de introducirnos en los distintos procedimientos en el análisis de ondas en electroencefalogramas, así como la forma en que se deben de colocar los electrodos en el cráneo. Para terminar con la investigación previa, se realiza en MATLAB un primer modelo de procesamiento de los datos. Una característica muy importante de las ondas cerebrales es la aleatoriedad de las mismas, de forma que el análisis en el dominio del tiempo se vuelve muy complejo. Por ello, el paso más importante en el procesamiento de los datos es el paso del dominio temporal al dominio de la frecuencia, mediante la aplicación de la transformada rápida de Fourier o FFT (Fast Fourier Transform), donde se pueden analizar con mayor precisión los datos recogidos. El modelo desarrollado en MATLAB se utiliza para obtener los primeros resultados del sistema de procesamiento, el cual sigue los siguientes pasos. 1. Se captan los datos desde los electrodos y se escriben en una tabla de datos. 2. Se leen los datos de la tabla. 3. Se elige el tamaño temporal de la muestra a procesar. 4. Se aplica una ventana para evitar las discontinuidades al principio y al final del bloque analizado. 5. Se completa la muestra a convertir con con zero-padding en el dominio del tiempo. 6. Se aplica la FFT al bloque analizado con ventana y zero-padding. 7. Los resultados se llevan a una gráfica para ser analizados. Llegados a este punto, se observa que la captación de ondas alfas resulta muy viable. Aunque es cierto que se presentan ciertos problemas a la hora de interpretar los datos debido a la baja resolución temporal de la plataforma de OpenBCI, este es un problema que se soluciona en el modelo desarrollado, al permitir el kit de evaluación (sistema de captación de datos) actuar sobre la velocidad de captación de los datos, es decir la frecuencia de muestreo, lo que afectará directamente a esta precisión. Una vez llevado a cabo el primer procesamiento y su posterior análisis de los resultados obtenidos, se procede a realizar un modelo en Hardware que siga los mismos pasos que el desarrollado en MATLAB, en la medida que esto sea útil y viable. Para ello se utiliza el programa XPS (Xilinx Platform Studio) contenido en la herramienta EDK (Embedded Development Kit), que nos permite diseñar un sistema embebido. Este sistema cuenta con: Un microprocesador de tipo soft-core llamado MicroBlaze, que se encarga de gestionar y controlar todo el sistema; Un bloque FFT que se encarga de realizar la transformada rápida Fourier; Cuatro bloques de memoria BRAM, donde se almacenan los datos de entrada y salida del bloque FFT y un multiplicador para aplicar la ventana a los datos de entrada al bloque FFT; Un bus PLB, que consiste en un bus de control que se encarga de comunicar el MicroBlaze con los diferentes elementos del sistema. Tras el diseño Hardware se procede al diseño Software utilizando la herramienta SDK(Software Development Kit).También en esta etapa se integra el sistema de captación de datos, el cual se controla mayoritariamente desde el MicroBlaze. Por tanto, desde este entorno se programa el MicroBlaze para gestionar el Hardware que se ha generado. A través del Software se gestiona la comunicación entre ambos sistemas, el de captación y el de procesamiento de los datos. También se realiza la carga de los datos de la ventana a aplicar en la memoria correspondiente. En las primeras etapas de desarrollo del sistema, se comienza con el testeo del bloque FFT, para poder comprobar el funcionamiento del mismo en Hardware. Para este primer ensayo, se carga en la BRAM los datos de entrada al bloque FFT y en otra BRAM los datos de la ventana aplicada. Los datos procesados saldrán a dos BRAM, una para almacenar los valores reales de la transformada y otra para los imaginarios. Tras comprobar el correcto funcionamiento del bloque FFT, se integra junto al sistema de adquisición de datos. Posteriormente se procede a realizar un ensayo de EEG real, para captar ondas alfa. Por otro lado, y para validar el uso de las FPGAs como unidades ideales de procesamiento, se realiza una medición del tiempo que tarda el bloque FFT en realizar la transformada. Este tiempo se compara con el tiempo que tarda MATLAB en realizar la misma transformada a los mismos datos. Esto significa que el sistema desarrollado en Hardware realiza la transformada rápida de Fourier 27 veces más rápido que lo que tarda MATLAB, por lo que se puede ver aquí la gran ventaja competitiva del Hardware en lo que a tiempos de ejecución se refiere. En lo que al aspecto didáctico se refiere, este TFG engloba diferentes campos. En el campo de la electrónica:  Se han mejorado los conocimientos en MATLAB, así como diferentes herramientas que ofrece como FDATool (Filter Design Analysis Tool).  Se han adquirido conocimientos de técnicas de procesado de señal, y en particular, de análisis espectral.  Se han mejorado los conocimientos en VHDL, así como su uso en el entorno ISE de Xilinx.  Se han reforzado los conocimientos en C mediante la programación del MicroBlaze para el control del sistema.  Se ha aprendido a crear sistemas embebidos usando el entorno de desarrollo de Xilinx usando la herramienta EDK (Embedded Development Kit). En el campo de la neurología, se ha aprendido a realizar ensayos EEG, así como a analizar e interpretar los resultados mostrados en el mismo. En cuanto al impacto social, los sistemas BCI afectan a muchos sectores, donde destaca el volumen de personas con discapacidades físicas, para los cuales, este sistema implica una oportunidad de aumentar su autonomía en el día a día. También otro sector importante es el sector de la investigación médica, donde los sistemas BCIs son aplicables en muchas aplicaciones como, por ejemplo, la detección y estudio de enfermedades cognitivas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este Proyecto Fin de Grado se ha realizado un estudio de cómo generar, a partir de modelos de flujo de datos en RVC-CAL (Reconfigurable Video Coding – CAL Actor Language), modelos VHDL (Versatile Hardware Description Language) mediante Vivado HLS (Vivado High Level Synthesis), incluida en las herramientas disponibles en Vivado de Xilinx. Una vez conseguido el modelo VHDL resultante, la intención es que mediante las herramientas de Xilinx se programe en una FPGA (Field Programmable Gate Array) o el dispositivo Zynq también desarrollado por Xilinx. RVC-CAL es un lenguaje de flujo de datos que describe la funcionalidad de bloques funcionales, denominados actores. Las funcionalidades que desarrolla un actor se definen como acciones, las cuales pueden ser diferentes en un mismo actor. Los actores pueden comunicarse entre sí y formar una red de actores o network. Con Vivado HLS podemos obtener un diseño VHDL a partir de un modelo en lenguaje C. Por lo que la generación de modelos en VHDL a partir de otros en RVC-CAL, requiere una fase previa en la que los modelos en RVC-CAL serán compilados para conseguir su equivalente en lenguaje C. El compilador ORCC (Open RVC-CAL Compiler) es la herramienta que nos permite lograr diseños en lenguaje C partiendo de modelos en RVC-CAL. ORCC no crea directamente el código ejecutable, sino que genera un código fuente disponible para ser compilado por otra herramienta, en el caso de este proyecto, el compilador GCC (Gnu C Compiler) de Linux. En resumen en este proyecto nos encontramos con tres puntos de estudio bien diferenciados, los cuales son: 1. Partimos de modelos de flujo de datos en RVC-CAL, los cuales son compilados por ORCC para alcanzar su traducción en lenguaje C. 2. Una vez conseguidos los diseños equivalentes en lenguaje C, son sintetizados en Vivado HLS para conseguir los modelos en VHDL. 3. Los modelos VHDL resultantes serian manipulados por las herramientas de Xilinx para producir el bitstream que sea programado en una FPGA o en el dispositivo Zynq. En el estudio del segundo punto, nos encontramos con una serie de elementos conflictivos que afectan a la síntesis en Vivado HLS de los diseños en lenguaje C generados por ORCC. Estos elementos están relacionados con la manera que se encuentra estructurada la especificación en C generada por ORCC y que Vivado HLS no puede soportar en determinados momentos de la síntesis. De esta manera se ha propuesto una transformación “manual” de los diseños generados por ORCC que afecto lo menos posible a los modelos originales para poder realizar la síntesis con Vivado HLS y crear el fichero VHDL correcto. De esta forma este documento se estructura siguiendo el modelo de un trabajo de investigación. En primer lugar, se exponen las motivaciones y objetivos que apoyan y se esperan lograr en este trabajo. Seguidamente, se pone de manifiesto un análisis del estado del arte de los elementos necesarios para el desarrollo del mismo, proporcionando los conceptos básicos para la correcta comprensión y estudio del documento. Se realiza una descripción de los lenguajes RVC-CAL y VHDL, además de una introducción de las herramientas ORCC y Vivado, analizando las bondades y características principales de ambas. Una vez conocido el comportamiento de ambas herramientas, se describen las soluciones desarrolladas en nuestro estudio de la síntesis de modelos en RVC-CAL, poniéndose de manifiesto los puntos conflictivos anteriormente señalados que Vivado HLS no puede soportar en la síntesis de los diseños en lenguaje C generados por el compilador ORCC. A continuación se presentan las soluciones propuestas a estos errores acontecidos durante la síntesis, con las cuales se pretende alcanzar una especificación en C más óptima para una correcta síntesis en Vivado HLS y alcanzar de esta forma los modelos VHDL adecuados. Por último, como resultado final de este trabajo se extraen un conjunto de conclusiones sobre todos los análisis y desarrollos acontecidos en el mismo. Al mismo tiempo se proponen una serie de líneas futuras de trabajo con las que se podría continuar el estudio y completar la investigación desarrollada en este documento. ABSTRACT. In this Project it has made a study of how to generate, from data flow models in RVC-CAL (Reconfigurable Video Coding - Actor CAL Language), VHDL models (Versatile Hardware Description Language) by Vivado HLS (Vivado High Level Synthesis), included in the tools available in Vivado of Xilinx. Once achieved the resulting VHDL model, the intention is that by the Xilinx tools programmed in FPGA or Zynq device also developed by Xilinx. RVC-CAL is a dataflow language that describes the functionality of functional blocks, called actors. The functionalities developed by an actor are defined as actions, which may be different in the same actor. Actors can communicate with each other and form a network of actors. With Vivado HLS we can get a VHDL design from a model in C. So the generation of models in VHDL from others in RVC-CAL requires a preliminary phase in which the models RVC-CAL will be compiled to get its equivalent in C. The compiler ORCC (Open RVC-CAL Compiler) is the tool that allows us to achieve designs in C language models based on RVC-CAL. ORCC not directly create the executable code but generates an available source code to be compiled by another tool, in the case of this project, the GCC compiler (GNU C Compiler) of Linux. In short, in this project we find three well-defined points of study, which are: 1. We start from data flow models in RVC-CAL, which are compiled by ORCC to achieve its translation in C. 2. Once you realize the equivalent designs in C, they are synthesized in Vivado HLS for VHDL models. 3. The resulting models VHDL would be manipulated by Xilinx tools to produce the bitstream that is programmed into an FPGA or Zynq device. In the study of the second point, we find a number of conflicting elements that affect the synthesis Vivado HLS designs in C generated by ORCC. These elements are related to the way it is structured specification in C generated ORCC and Vivado HLS cannot hold at certain times of the synthesis. Thus it has proposed a "manual" transformation of designs generated by ORCC that affected as little as possible to the original in order to perform the synthesis Vivado HLS and create the correct file VHDL models. Thus this document is structured along the lines of a research. First, the motivations and objectives that support and hope to reach in this work are presented. Then it shows an analysis the state of the art of the elements necessary for its development, providing the basics for a correct understanding and study of the document. A description of the RVC-CAL and VHDL languages is made, in addition an introduction of the ORCC and Vivado tools, analyzing the advantages and main features of both. Once you know the behavior of both tools, the solutions developed in our study of the synthesis of RVC-CAL models, introducing the conflicting points mentioned above are described that Vivado HLS cannot stand in the synthesis of design in C language generated by ORCC compiler. Below the proposed solutions to these errors occurred during synthesis, with which it is intended to achieve optimum C specification for proper synthesis Vivado HLS and thus create the appropriate VHDL models are presented. Finally, as the end result of this work a set of conclusions on all analyzes and developments occurred in the same are removed. At the same time a series of future lines of work which could continue to study and complete the research developed in this document are proposed.