3 resultados para Veterinary physical medicine
em Universidad Politécnica de Madrid
Resumo:
Las Tecnologías de la Información y las Comunicaciones han propiciado avances en el contexto de la salud tanto en la gestión efectiva de información socio‐sanitaria de forma electrónica, como en la provisión de servicios de e‐salud y telemedicina. Los antecedentes de investigación publicados en esta área corroboran este hecho presentando las mejoras experimentadas en la atención de la población y en la provisión de servicios sanitarios. La atención temprana, cuyos principios científicos se fundamentan en los campos de la pediatría, neurología, psicología, psiquiatría, pedagogía, fisiatría y lingüística, entre otros, tiene como finalidad ofrecer a los niños con déficit o con riesgo de padecerlos un conjunto de acciones optimizadoras y compensadoras, que faciliten su adecuada maduración en todos los ámbitos y que les permita alcanzar el máximo nivel de desarrollo personal y de integración social. La detección de posibles alteraciones en el desarrollo infantil es un aspecto clave de la atención temprana en la medida en que puede posibilitar la puesta en marcha de diversos mecanismos de actuación disponibles en las entidades implicadas, valiosos para la calidad de vida de la persona. Cuanto antes se realice la detección, existen mayores garantías de prevenir patologías añadidas, lograr mejoras funcionales y posibilitar un ajuste más adaptativo entre el niño y su entorno. El objetivo de la investigación presentada en esta tesis doctoral es analizar, diseñar, verificar y validar un sistema de información abierto, basado en conocimiento, que facilite efectivamente a los profesionales que trabajan con la población infantil entre 0 y 6 años la detección precoz de posibles trastornos del lenguaje. Desde el punto de vista metodológico, la Ingeniería del Conocimiento ofrece un marco conceptual sólido que permite desarrollar y validar Sistemas de Ayuda a la Toma de Decisiones distribuidos y escalables, capaces de ayudar al pediatra de Atención Primaria y al educador infantil en la detección precoz de posibles trastornos del lenguaje en niños. La evaluación del sistema se ha realizado de forma incremental mediante el diseño y validación de pruebas de campo experimentales consistentes en la evaluación de niños en dos escenarios distintos: la escuela infantil y el centro de atención temprana. Los experimentos realizados en poblaciones distintas con alrededor de 344 niños durante 2 años, han permitido contrastar la buena adecuación del sistema propuesto a las necesidades de detección de los profesionales que trabajan con niños entre 0 y 6 años. La tesis resultante ha permitido caracterizar el uso del sistema en entornos reales, conocer la aceptación entre los usuarios y su impacto en la provisión de un servicio de atención temprana como el descrito para el correcto seguimiento del desarrollo del lenguaje en los niños, además de proponer un nuevo modelo de atención y evaluación cooperativa que permita incrementar el conocimiento experimental existente al respecto. ABSTRACT The Information and Communication Technology have led to advances in the context of health both in the effective management of socio‐health information electronically, and in the provision of e‐health and telemedicine. The history of research published in this area confirm this fact by presenting the improvements in the care of the population and the provision of health services. Early attention, whose scientific principles are based on the fields of pediatrics, neurology, psychology, psychiatry, pedagogy, physical medicine and linguistics, among others, aims to provide children with deficits or risk of suffering a set of enhancer actions, which facilitate adequate maturation in all areas and allow them to achieve the highest level of personal development and social integration. The detection of possible changes in child development is a key aspect of early intervention to the extent that it can enable the implementation of different mechanisms of action available to the entities involved, valuable to the quality of life of the person. The earlier the detection is made, there are more guarantees added to prevent diseases, achieving functional improvements and enable a more adaptive fit between the child and his environment. The aim of the research presented is to analyze, design, verify and validate an open information system, based on knowledge, which effectively provide professionals working with the child population between 0 and 6 years, in processes of early detection of language disorders. From the methodological point of view, Knowledge Engineering provides a solid conceptual framework to develop and validate a distributed and scalable decision support systems aim to assist pediatricians and language therapists at early identification and referral of language disorder in childhood. The system evaluation was performed incrementally with the design and validation of consistent experimental field tests in the assessment of children in two different scenarios: the nursery and early intervention center. Experiments in different populations with about 344 children over 2 years, allowed to testing the adequacy of the proposed good detection needs of professionals working with children between 0 and 6 years old system. The resulting thesis has allowed to formalizing the system at real environments and to identifying the acceptance by users as well as its impact on the provision of an early intervention service, such as the one described for the proper monitoring of language development in children. In addition, it proposes a new model of care and cooperative evaluation that lets to increase the existing experimental knowledge about it.
Resumo:
This work explores the automatic recognition of physical activity intensity patterns from multi-axial accelerometry and heart rate signals. Data collection was carried out in free-living conditions and in three controlled gymnasium circuits, for a total amount of 179.80 h of data divided into: sedentary situations (65.5%), light-to-moderate activity (17.6%) and vigorous exercise (16.9%). The proposed machine learning algorithms comprise the following steps: time-domain feature definition, standardization and PCA projection, unsupervised clustering (by k-means and GMM) and a HMM to account for long-term temporal trends. Performance was evaluated by 30 runs of a 10-fold cross-validation. Both k-means and GMM-based approaches yielded high overall accuracy (86.97% and 85.03%, respectively) and, given the imbalance of the dataset, meritorious F-measures (up to 77.88%) for non-sedentary cases. Classification errors tended to be concentrated around transients, what constrains their practical impact. Hence, we consider our proposal to be suitable for 24 h-based monitoring of physical activity in ambulatory scenarios and a first step towards intensity-specific energy expenditure estimators
Resumo:
Guías de actividad física durante el embarazo