3 resultados para Vertical dimension

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente proyecto final de carrera titulado “Modelado de alto nivel con SystemC” tiene como objetivo principal el modelado de algunos módulos de un codificador de vídeo MPEG-2 utilizando el lenguaje de descripción de sistemas igitales SystemC con un nivel de abstracción TLM o Transaction Level Modeling. SystemC es un lenguaje de descripción de sistemas digitales basado en C++. En él hay un conjunto de rutinas y librerías que implementan tipos de datos, estructuras y procesos especiales para el modelado de sistemas digitales. Su descripción se puede consultar en [GLMS02] El nivel de abstracción TLM se caracteriza por separar la comunicación entre los módulos de su funcionalidad. Este nivel de abstracción hace un mayor énfasis en la funcionalidad de la comunicación entre los módulos (de donde a donde van datos) que la implementación exacta de la misma. En los documentos [RSPF] y [HG] se describen el TLM y un ejemplo de implementación. La arquitectura del modelo se basa en el codificador MVIP-2 descrito en [Gar04], de dicho modelo, los módulos implementados son: · IVIDEOH: módulo que realiza un filtrado del vídeo de entrada en la dimensión horizontal y guarda en memoria el video filtrado. · IVIDEOV: módulo que lee de la memoria el vídeo filtrado por IVIDEOH, realiza el filtrado en la dimensión horizontal y escribe el video filtrado en memoria. · DCT: módulo que lee el video filtrado por IVIDEOV, hace la transformada discreta del coseno y guarda el vídeo transformado en la memoria. · QUANT: módulo que lee el video transformado por DCT, lo cuantifica y guarda el resultado en la memoria. · IQUANT: módulo que lee el video cuantificado por QUANT, realiza la cuantificación inversa y guarda el resultado en memoria. · IDCT: módulo que lee el video procesado por IQUANT, realiza la transformada inversa del coseno y guarda el resultado en memoria. · IMEM: módulo que hace de interfaz entre los módulos anteriores y la memoria. Gestiona las peticiones simultáneas de acceso a la memoria y asegura el acceso exclusivo a la memoria en cada instante de tiempo. Todos estos módulos aparecen en gris en la siguiente figura en la que se muestra la arquitectura del modelo: Figura 1. Arquitectura del modelo (VER PDF DEL PFC) En figura también aparecen unos módulos en blanco, dichos módulos son de pruebas y se han añadido para realizar simulaciones y probar los módulos del modelo: · CAMARA: módulo que simula una cámara en blanco y negro, lee la luminancia de un fichero de vídeo y lo envía al modelo a través de una FIFO. · FIFO: hace de interfaz entre la cámara y el modelo, guarda los datos que envía la cámara hasta que IVIDEOH los lee. · CONTROL: módulo que se encarga de controlar los módulos que procesan el vídeo, estos le indican cuando terminan de procesar un frame de vídeo y este módulo se encarga de iniciar los módulos que sean necesarios para seguir con la codificación. Este módulo se encarga del correcto secuenciamiento de los módulos procesadores de vídeo. · RAM: módulo que simula una memoria RAM, incluye un retardo programable en el acceso. Para las pruebas también se han generado ficheros de vídeo con el resultado de cada módulo procesador de vídeo, ficheros con mensajes y un fichero de trazas en el que se muestra el secuenciamiento de los procesadores. Como resultado del trabajo en el presente PFC se puede concluir que SystemC permite el modelado de sistemas digitales con bastante sencillez (hace falta conocimientos previos de C++ y programación orientada objetos) y permite la realización de modelos con un nivel de abstracción mayor a RTL, el habitual en Verilog y VHDL, en el caso del presente PFC, el TLM. ABSTRACT This final career project titled “High level modeling with SystemC” have as main objective the modeling of some of the modules of an MPEG-2 video coder using the SystemC digital systems description language at the TLM or Transaction Level Modeling abstraction level. SystemC is a digital systems description language based in C++. It contains routines and libraries that define special data types, structures and process to model digital systems. There is a complete description of the SystemC language in the document [GLMS02]. The main characteristic of TLM abstraction level is that it separates the communication among modules of their functionality. This abstraction level puts a higher emphasis in the functionality of the communication (from where to where the data go) than the exact implementation of it. The TLM and an example are described in the documents [RSPF] and [HG]. The architecture of the model is based in the MVIP-2 video coder (described in the document [Gar04]) The modeled modules are: · IVIDEOH: module that filter the video input in the horizontal dimension. It saves the filtered video in the memory. · IVIDEOV: module that read the IVIDEOH filtered video, filter it in the vertical dimension and save the filtered video in the memory. · DCT: module that read the IVIDEOV filtered video, do the discrete cosine transform and save the transformed video in the memory. · QUANT: module that read the DCT transformed video, quantify it and save the quantified video in the memory. · IQUANT: module that read the QUANT processed video, do the inverse quantification and save the result in the memory. · IDCT: module that read the IQUANT processed video, do the inverse cosine transform and save the result in the memory. · IMEM: this module is the interface between the modules described previously and the memory. It manage the simultaneous accesses to the memory and ensure an unique access at each instant of time All this modules are included in grey in the following figure (SEE PDF OF PFC). This figure shows the architecture of the model: Figure 1. Architecture of the model This figure also includes other modules in white, these modules have been added to the model in order to simulate and prove the modules of the model: · CAMARA: simulates a black and white video camera, it reads the luminance of a video file and sends it to the model through a FIFO. · FIFO: is the interface between the camera and the model, it saves the video data sent by the camera until the IVIDEOH module reads it. · CONTROL: controls the modules that process the video. These modules indicate the CONTROL module when they have finished the processing of a video frame. The CONTROL module, then, init the necessary modules to continue with the video coding. This module is responsible of the right sequence of the video processing modules. · RAM: it simulates a RAM memory; it also simulates a programmable delay in the access to the memory. It has been generated video files, text files and a trace file to check the correct function of the model. The trace file shows the sequence of the video processing modules. As a result of the present final career project, it can be deduced that it is quite easy to model digital systems with SystemC (it is only needed previous knowledge of C++ and object oriented programming) and it also allow the modeling with a level of abstraction higher than the RTL used in Verilog and VHDL, in the case of the present final career project, the TLM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (Λ1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak? digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ?373 ?m of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (?1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates.