2 resultados para Versus-host-disease
em Universidad Politécnica de Madrid
Resumo:
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species.
Resumo:
Aim of study: Tuber aestivum is the most widespread edible truffle, with increasing commercial interest. This species can produce carpophores with conifer hosts, in contrast with the inability of Pinus spp. to induce fruiting in other truffle species such as Tuber melanosporum. Therefore the objective is to compare the characteristics and carpophore production of T. aestivum brûlés associated with Pinus spp. versus Quercus spp. Area of study: We studied the natural habitats of T. aestivum in the Alto Tajo Nature Reserve in central Spain. Material and methods: During 5 years, we monitored the production of carpophores and brûlé size of 145 T. aestivum brûlés associated with Pinus nigra subsp. salzmanni and P. sylvestris and Quercus ilex subsp. ballota and Q. faginea hosts. Statistical treatment was performed using the Statistica Program v. 6. Main results: The size of brûlés associated with Pinus was significantly smaller than that of brûlés associated with Quercus. However, carpophore production per brûlé, and especially for brûlés of similar size, was greater when the host plant was a pine. After accounting for brûlé size, the production of brûlés associated with Pinus spp. was 2.23 (95% CI, between 1.35 and 3.69) and 1.61 (95% CI, between 1.02 and 2.54) times greater than the production of brûlés associated with Quercus faginea and Q. ilex subsp. ballota, respectively. Research highlights: The considerable ability of Pinus nigra subsp. salzmanni and P. sylvestris to form effective brûlés and to produce carpophores of Tuber aestivum in natural conditions was clearly demonstrated, and suggest that those species can be of use in the culture of T. aestivum.