8 resultados para Veneno de sapo

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spain is the fifth-largest producer of melon (Cucumis melo L.) and the second exporter in the world. To a national level, Castilla-La Mancha emphasize and, specifically, Ciudad Real, where is cultivated 27% of national area dedicated to this crop and 30% of melon national production. Melon crop is cultivating majority in Ciudad Real and it is mainly located in the Alto Guadiana, where the major aquifers of the region are located, the aquifer 23 or Mancha Occidental and the aquifer 24 or Campo de Montiel, both declared overexploited and vulnerable zones to nitrate pollution from agricultural sources. The problem is exacerbated because in this area, groundwater is the basic resource of supply to populations, and even often the only one. Given the importance of melon in the area, recent research has focused on the irrigation of melon crop. Unfortunately, scant information has been forthcoming on the effect of N fertilizer on melon piel de sapo crop, so it is very important to tackle in a serious study that lead to know the N requirements on the melon crop melon by reducing the risks of contamination by nitrate leaching without affecting productivity and crop quality. In fact, the recommended dose is often subjective and practice is a N overdose. In this situation, the taking of urgent measures to optimize the use of N fertilization is required. To do it, the effect of N in a melon crop, fertirrigated and on plastic mulch, was studied. The treatments consisted in different rates of N supply, considering N fertilizer and N content in irrigation water, so the treatment applied were: 30 (N30), 85 (N85), 112 (N112) and 139 (N139) Kg N ha-1 in 2005; 93 (N93), 243 (N243) and 393 (N393) kg ha-1 in 2006; and 11 (N11), 61 (N61), 95 (N95) and 148 (N148) kg ha-1 in 2007. A randomized complete-block design was used and each treatment was replicated four times. The results showed a significant effect of N on dry biomass and two patterns of growth were observed. On the one hand, a gradual increase in vegetative biomass of the plant, leaves and stem, with increasing N, and on the other hand, an increase of fruit biomass also with increasing N up to a maximum of biomass corresponding to the optimal dose determined in 90 kg ha-1 of N applied, corresponding to 160 kg ha-1 of N available for melon crop, since this optimum dose, the fruit biomass suffers a decline. A significant effect was observed in concentration and N uptake in leaf, steam, fruit and whole plant, increasing in all of them with increasing of N doses. Fast N uptake occurred from 30-35 to 70-80 days after transplanting, coinciding with the fruit development. The N had a clear influence on the melon yield, its components, skin thickness and flesh ratio. The melon yield increased, as the mean fruit weight and number of fruits per m2 with increasing N until achieve an above 95% of the maximum yield when the N applied is 90 kg ha-1 or 160 kg ha-1 of N available. When N exceeds the optimal amount, there is a decline in yield, reducing the mean fruit weight and number of fruits per square meter, and was also observed a decrease in fruit quality by increasing the skin thickness and decrease the flesh ratio, which means an increase in fruit hollowed with excessive N doses. There was a trend for all indexes of N use efficiency (NUE) to decline with increasing N rate. We observed two different behaviours in the calculation result of the NUE; on the one hand, all the efficiency indexes calculated with N applied and N available had an exponential trend, and on the other hand, all the efficiency indexes calculated with N uptake has a linear trend. The linear regression cuts the exponential curve, delimiting a range within which lies the optimum quantity of N. The N leaching as nitrates increased exponentially with the amount of N. The increase of N doses was affected on the N mineralization. There was a negative exponential effect of N available on the mineralization of this element that occurs in the soil during the growing season, calculated from the balances of this element. The study of N leaching for each N rate used, allowed to us to establish several environmental indices related to environmental risk that causes the use of such doses, a simple way for them to be included in the code of Best Management Practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to reduce nitrogen (N) fertilizer pollution strengthens the importance of improving the utilization efficiency of applied N to crops. This requires knowledge of crop N uptake characteristics and how fertilization management affects it. A three-year field experiment was conducted from May to September in central Spain to investigate the influence of different N rates, which ranged from 11 to 393 kg ha-1, applied through drip irrigation, on the dynamics of N uptake, nitrogen use efficiency (NUE), fruit yield and quality of a ?Piel de sapo? melon crop (Cucumis melo L. cv. Sancho). Both N concentration and N content increased in different plant parts with the N rate. Leaves had the highest N concentration, which declined by 40-50% from 34-41 days after transplanting (DAT), while the highest N uptake rate was observed from 30-35 to 70-80 DAT, coinciding with fruit development. In each year, NUE declined with increasing N rate. With N fertilizer applications close to the optimum N rate of 90-100 kg ha-1, the fruits removed approximately 60 kg N ha-1, and the amount of N in the crop residue was about 80 kg N ha-1; this serves to replenish the organic nutrient pool in the soil and may be used by subsequent crops following mineralization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mapping F2 population from the cross ‘Piel de Sapo’ × PI124112 was selectively genotyped to study the genetic control of morphological fruit traits by QTL (Quantitative Trait Loci) analysis. Ten QTL were identified, five for FL (Fruit Length), two for FD (Fruit Diameter) and three for FS (Fruit Shape). At least one robust QTL per character was found, flqs8.1 (LOD = 16.85, R2 = 34%), fdqs12.1 (LOD = 3.47, R2 = 11%) and fsqs8.1 (LOD = 14.85, R2 = 41%). flqs2.1 and fsqs2.1 cosegregate with gene a (andromonoecious), responsible for flower sex determination and with pleiotropic effects on FS. They display a positive additive effect (a) value, so the PI124112 allele causes an increase in FL and FS, producing more elongated fruits. Conversely, the negative a value for flqs8.1 and fsqs8.1 indicates a decrease in FL and FS, what results in rounder fruits, even if PI124112 produces very elongated melons. This is explained by a significant epistatic interaction between fsqs2.1 and fsqs8.1, where the effects of the alleles at locus a are attenuated by the additive PI124112 allele at fsqs8.1. Roundest fruits are produced by homozygous for PI124112 at fsqs8.1 that do not carry any dominant A allele at locus a (PiPiaa). A significant interaction between fsqs8.1 and fsqs12.1 was also detected, with the alleles at fsqs12.1 producing more elongated fruits. fsqs8.1 seems to be allelic to QTL discovered in other populations where the exotic alleles produce elongated fruits. This model has been validated in assays with backcross lines along 3 years and ultimately obtaining a fsqs8.1-NIL (Near Isogenic Line) in ‘Piel de Sapo’ background which yields round melons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogen (N) is an important nutrient for melon (Cucumis melo L.) production. However there is scanty information about the amount necessary to maintain an appropriate balance between growth and yield. Melon vegetative organs must develop sufficiently to intercept light and accumulate water and nutrients but it is also important to obtain a large reproductive-vegetative dry weight ratio to maximize the fruit yield. We evaluated the influence of different N amounts on the growth, production of dry matter and fruit yield of a melon ‘Piel de sapo’ type. A three-year field experiment was carried out from May to September. Melons were subjected to an irrigation depth of 100% crop evapotranspiration and to 11 N fertilization rates, ranging 11 to 393 kg ha –1 in the three years. The dry matter production of leaves and stems increased as the N amount increased. The dry matter of the whole plant was affected similarly, while the fruit dry matter decreased as the N amount was increased above 112, 93 and 95 kg ha –1 , in 2005, 2006 and 2007, respectively. The maximum Leaf Area Index (LAI), 3.1, was obtained at 393 kg ha –1 of N. The lowest N supply reduced the fruit yield by 21%, while the highest increased the vegetative growth, LAI and Leaf Area Duration (LAD), but reduced yield by 24% relative to the N93 treatment. Excessive applications of N increase vegetative growth at the expense of reproductive growth. For this melon type, rates about 90-100 kg ha –1 of N are sufficient for adequate plant growth, development and maximum production. To obtain fruit yield close to the maximum, the leaf N concentration at the end of the crop cycle should be higher than 19.5 g kg –1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una de las principales causas de la actual crisis de biodiversidad es la pérdida y fragmentación del hábitat. En muchos casos, esta fragmentación es consecuencia de la construcción de infraestructuras lineales. El tramo de la carretera M-301 de Madrid estudiado es el que concentra mayor número de atropellos de anfibios en la Comunidad. Los atropellos son especialmente numerosos durante las migraciones reproductoras de los individuos (Se han registrado hasta 400 atropellos/noche). En el estudio se analiza la conectividad de la zona para el sapo común (Bufo bufo) y el sapo corredor (Bufo calamita) mediante los programas UNICOR y Circuitscape. Los resultados, como queda demostrado, presentan modelos de rutas muy próximos a la realidad. Finalmente se presentan posibles medidas correctoras útiles para anfibios y otros grupos faunísticos. El estudio proporciona herramientas para solucionar posibles problemas de conectividad del territorio que se presenten en futuros levantamientos de infraestructuras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of Rheology to study biological systems is a new and very extensive matter, in which melon is absolutely unknown. The goal of this work is to determine some physical characteristics of this fruit, immediately after harvest and during its conservation in cold storage. Portugal and Spain are the most interested countries in these studies, as they are important producers of melon. The varieties Branco da Leziria and Piel de sapo were chosen because they are the most popular in both countries. The fruit were studied on the day they were harvested, and then were conserved in cold storage in the "Instituto del Frio" in Madrid, and they were periodically tested again. Thus during seven days the same fruits, and new fruits, were picked up and tested. On the first day of testing we had 20 fruits to study and at the end of the testing period we had used 80 fruits. The results from the non-destructive impact test were very significant and they may contribute to standardise methods to measure fruit maturity. These results were confirmed by those obtained from compression tests. The results obtained during the Impact tests with melon were similar to those obtained previously with other fruits. There is a close relationship between the results of the Impact tests and Compression tests. Tests like Impact and Compression can be adapted to melon, varieties 'Piel de Sapo" and 'Branco de Leziria', allowing us to continue further work with this species. The great number of data obtained during performance of the tests allowed us to go on with this work and to contribute to standardise methods of measurement and expression of characteristics of a new biological product. During the "Impact damage in fruits and vegetables" workshop, held in Zaragoza in 1990, these matters were included in the priority list.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O conhecimento preciso das características físicas dos frutos reveste-se do maior interesse pois permite minimizar as perdas por danos mecânicos, fornece dados para o desenho de novas maquinas e facilita a determinação das condições ideais de conservação. À determinação das características físicas de melão, a sua resistência aos danos físicos o seu comportamento quando sujeito a forças de deforma çao, sao estudadas mediante a utilização de diversos métodos. Foram seleccionadas duas variedades de melão ( Cucumis melo L.), as mais significativas em Espanha e Portugal respectivamente " Piei de Sapo " e " Melão Branco da Lezíria ". Ambos foram cultivados nas mesmas condições edafo-climáticas e sujeitos ã iguais práticas agronómicas, tendo sido os seus frutos sujeitos a diversos testes no " Laboratorio de Propiedades Físicas " da " Escola Técnica Superior de Ingenieros Agrónomos de Madrid ". Foram estudados diversos parâmetros como: " impact loading ", penetração, deformação e ruptura de frutos e ainda deformação e ruptura de amostras cilíndricas. O efeito do armazenamento em cámaras de frio sobre as propiedades físicas dos frutos foi também objecto de estudo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to establish rational nitrogen (N) application and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its balance is crucial. Excessive doses of N and/or water applied to fertigated crops involve a substantial risk of aquifer contamination by nitrate; but knowledge of N cycling and availability within the soil could assist in avoiding this excess. In central Spain, the main horticultural fertigated crop is the melon type ?piel de sapo¿ and it is cultivated in vulnerable zones to nitrate pollution (Directive 91/676/CEE). However, until few years ago there were not antecedents related to the optimization of nitrogen fertilization together with irrigation. Water and N footprint are indicators that allow assessing the impact generated by different agricultural practices, so they can be used to improve the management strategies in fertigated crop systems. The water footprint distinguishes between blue water (sources of water applied to the crop, like irrigation and precipitation), green water (water used by the crop and stored in the soil), and it is furthermore possible to quantify the impact of pollution by calculating the grey water, which is defined as the volume of polluted water created from the growing and production of crops. On the other hand, the N footprint considers green N (nitrogen consumed by the crops and stored in the soil), blue N (N available for crop, like N applied with mineral and/or organic fertilizers, N applied with irrigation water and N mineralized during the crop period), whereas grey N is the amount of N-NO3- washed from the soil to the aquifer. All these components are expressed as the ratio between the components of water or N footprint and the yield (m3 t-1 or kg N t-1 respectively). The objetives of this work were to evaluate the impact derivated from the use of different fertilizer practices in a melon crop using water and N footprint.