12 resultados para Vector analysis.
em Universidad Politécnica de Madrid
Resumo:
In this letter, we propose a novel method for unsupervised change detection (CD) in multitemporal Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) satellite images by using the relative dimensionless global error in synthesis index locally. In order to obtain the change image, the index is calculated around a pixel neighborhood (3x3 window) processing simultaneously all the spectral bands available. With the objective of finding the binary change masks, six thresholding methods are selected. A comparison between the proposed method and the change vector analysis method is reported. The accuracy CD showed in the experimental results demonstrates the effectiveness of the proposed method.
Resumo:
This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.
Resumo:
The application of thematic maps obtained through the classification of remote images needs the obtained products with an optimal accuracy. The registered images from the airplanes display a very satisfactory spatial resolution, but the classical methods of thematic classification not always give better results than when the registered data from satellite are used. In order to improve these results of classification, in this work, the LIDAR sensor data from first return (Light Detection And Ranging) registered simultaneously with the spectral sensor data from airborne are jointly used. The final results of the thematic classification of the scene object of study have been obtained, quantified and discussed with and without LIDAR data, after applying different methods: Maximum Likehood Classification, Support Vector Machine with four different functions kernel and Isodata clustering algorithm (ML, SVM-L, SVM-P, SVM-RBF, SVM-S, Isodata). The best results are obtained for SVM with Sigmoide kernel. These allow the correlation with others different physical parameters with great interest like Manning hydraulic coefficient, for their incorporation in a GIS and their application in hydraulic modeling.
Resumo:
This paper outlines an automatic computervision system for the identification of avena sterilis which is a special weed seed growing in cereal crops. The final goal is to reduce the quantity of herbicide to be sprayed as an important and necessary step for precision agriculture. So, only areas where the presence of weeds is important should be sprayed. The main problems for the identification of this kind of weed are its similar spectral signature with respect the crops and also its irregular distribution in the field. It has been designed a new strategy involving two processes: image segmentation and decision making. The image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and weeds. The decision making is based on the SupportVectorMachines and determines if a cell must be sprayed. The main findings of this paper are reflected in the combination of the segmentation and the SupportVectorMachines decision processes. Another important contribution of this approach is the minimum requirements of the system in terms of memory and computation power if compared with other previous works. The performance of the method is illustrated by comparative analysis against some existing strategies.
Resumo:
In this paper, we use ARIMA modelling to estimate a set of characteristics of a short-term indicator (for example, the index of industrial production), as trends, seasonal variations, cyclical oscillations, unpredictability, deterministic effects (as a strike), etc. Thus for each sector and product (more than 1000), we construct a vector of values corresponding to the above-mentioned characteristics, that can be used for data editing.
Resumo:
Background Objective assessment of psychomotor skills has become an important challenge in the training of minimally invasive surgical (MIS) techniques. Currently, no gold standard defining surgical competence exists for classifying residents according to their surgical skills. Supervised classification has been proposed as a means for objectively establishing competence thresholds in psychomotor skills evaluation. This report presents a study comparing three classification methods for establishing their validity in a set of tasks for basic skills’ assessment. Methods Linear discriminant analysis (LDA), support vector machines (SVM), and adaptive neuro-fuzzy inference systems (ANFIS) were used. A total of 42 participants, divided into an experienced group (4 expert surgeons and 14 residents with >10 laparoscopic surgeries performed) and a nonexperienced group (16 students and 8 residents with <10 laparoscopic surgeries performed), performed three box trainer tasks validated for assessment of MIS psychomotor skills. Instrument movements were captured using the TrEndo tracking system, and nine motion analysis parameters (MAPs) were analyzed. The performance of the classifiers was measured by leave-one-out cross-validation using the scores obtained by the participants. Results The mean accuracy performances of the classifiers were 71 % (LDA), 78.2 % (SVM), and 71.7 % (ANFIS). No statistically significant differences in the performance were identified between the classifiers. Conclusions The three proposed classifiers showed good performance in the discrimination of skills, especially when information from all MAPs and tasks combined were considered. A correlation between the surgeons’ previous experience and their execution of the tasks could be ascertained from results. However, misclassifications across all the classifiers could imply the existence of other factors influencing psychomotor competence.
Resumo:
La necesidad de desarrollar técnicas para predecir la respuesta vibroacústica de estructuras espaciales lia ido ganando importancia en los últimos años. Las técnicas numéricas existentes en la actualidad son capaces de predecir de forma fiable el comportamiento vibroacústico de sistemas con altas o bajas densidades modales. Sin embargo, ambos rangos no siempre solapan lo que hace que sea necesario el desarrollo de métodos específicos para este rango, conocido como densidad modal media. Es en este rango, conocido también como media frecuencia, donde se centra la presente Tesis doctoral, debido a la carencia de métodos específicos para el cálculo de la respuesta vibroacústica. Para las estructuras estudiadas en este trabajo, los mencionados rangos de baja y alta densidad modal se corresponden, en general, con los rangos de baja y alta frecuencia, respectivamente. Los métodos numéricos que permiten obtener la respuesta vibroacústica para estos rangos de frecuencia están bien especificados. Para el rango de baja frecuencia se emplean técnicas deterministas, como el método de los Elementos Finitos, mientras que, para el rango de alta frecuencia las técnicas estadísticas son más utilizadas, como el Análisis Estadístico de la Energía. En el rango de medias frecuencias ninguno de estos métodos numéricos puede ser usado con suficiente precisión y, como consecuencia -a falta de propuestas más específicas- se han desarrollado métodos híbridos que combinan el uso de métodos de baja y alta frecuencia, intentando que cada uno supla las deficiencias del otro en este rango medio. Este trabajo propone dos soluciones diferentes para resolver el problema de la media frecuencia. El primero de ellos, denominado SHFL (del inglés Subsystem based High Frequency Limit procedure), propone un procedimiento multihíbrido en el cuál cada subestructura del sistema completo se modela empleando una técnica numérica diferente, dependiendo del rango de frecuencias de estudio. Con este propósito se introduce el concepto de límite de alta frecuencia de una subestructura, que marca el límite a partir del cual dicha subestructura tiene una densidad modal lo suficientemente alta como para ser modelada utilizando Análisis Estadístico de la Energía. Si la frecuencia de análisis es menor que el límite de alta frecuencia de la subestructura, ésta se modela utilizando Elementos Finitos. Mediante este método, el rango de media frecuencia se puede definir de una forma precisa, estando comprendido entre el menor y el mayor de los límites de alta frecuencia de las subestructuras que componen el sistema completo. Los resultados obtenidos mediante la aplicación de este método evidencian una mejora en la continuidad de la respuesta vibroacústica, mostrando una transición suave entre los rangos de baja y alta frecuencia. El segundo método propuesto se denomina HS-CMS (del inglés Hybrid Substructuring method based on Component Mode Synthesis). Este método se basa en la clasificación de la base modal de las subestructuras en conjuntos de modos globales (que afectan a todo o a varias partes del sistema) o locales (que afectan a una única subestructura), utilizando un método de Síntesis Modal de Componentes. De este modo es posible situar espacialmente los modos del sistema completo y estudiar el comportamiento del mismo desde el punto de vista de las subestructuras. De nuevo se emplea el concepto de límite de alta frecuencia de una subestructura para realizar la clasificación global/local de los modos en la misma. Mediante dicha clasificación se derivan las ecuaciones globales del movimiento, gobernadas por los modos globales, y en las que la influencia del conjunto de modos locales se introduce mediante modificaciones en las mismas (en su matriz dinámica de rigidez y en el vector de fuerzas). Las ecuaciones locales se resuelven empleando Análisis Estadístico de Energías. Sin embargo, este último será un modelo híbrido, en el cual se introduce la potencia adicional aportada por la presencia de los modos globales. El método ha sido probado para el cálculo de la respuesta de estructuras sometidas tanto a cargas estructurales como acústicas. Ambos métodos han sido probados inicialmente en estructuras sencillas para establecer las bases e hipótesis de aplicación. Posteriormente, se han aplicado a estructuras espaciales, como satélites y reflectores de antenas, mostrando buenos resultados, como se concluye de la comparación de las simulaciones y los datos experimentales medidos en ensayos, tanto estructurales como acústicos. Este trabajo abre un amplio campo de investigación a partir del cual es posible obtener metodologías precisas y eficientes para reproducir el comportamiento vibroacústico de sistemas en el rango de la media frecuencia. ABSTRACT Over the last years an increasing need of novel prediction techniques for vibroacoustic analysis of space structures has arisen. Current numerical techniques arc able to predict with enough accuracy the vibro-acoustic behaviour of systems with low and high modal densities. However, space structures are, in general, very complex and they present a range of frequencies in which a mixed behaviour exist. In such cases, the full system is composed of some sub-structures which has low modal density, while others present high modal density. This frequency range is known as the mid-frequency range and to develop methods for accurately describe the vibro-acoustic response in this frequency range is the scope of this dissertation. For the structures under study, the aforementioned low and high modal densities correspond with the low and high frequency ranges, respectively. For the low frequency range, deterministic techniques as the Finite Element Method (FEM) are used while, for the high frequency range statistical techniques, as the Statistical Energy Analysis (SEA), arc considered as more appropriate. In the mid-frequency range, where a mixed vibro-acoustic behaviour is expected, any of these numerical method can not be used with enough confidence level. As a consequence, it is usual to obtain an undetermined gap between low and high frequencies in the vibro-acoustic response function. This dissertation proposes two different solutions to the mid-frequency range problem. The first one, named as The Subsystem based High Frequency Limit (SHFL) procedure, proposes a multi-hybrid procedure in which each sub-structure of the full system is modelled with the appropriate modelling technique, depending on the frequency of study. With this purpose, the concept of high frequency limit of a sub-structure is introduced, marking out the limit above which a substructure has enough modal density to be modelled by SEA. For a certain analysis frequency, if it is lower than the high frequency limit of the sub-structure, the sub-structure is modelled through FEM and, if the frequency of analysis is higher than the high frequency limit, the sub-structure is modelled by SEA. The procedure leads to a number of hybrid models required to cover the medium frequency range, which is defined as the frequency range between the lowest substructure high frequency limit and the highest one. Using this procedure, the mid-frequency range can be define specifically so that, as a consequence, an improvement in the continuity of the vibro-acoustic response function is achieved, closing the undetermined gap between the low and high frequency ranges. The second proposed mid-frequency solution is the Hybrid Sub-structuring method based on Component Mode Synthesis (HS-CMS). The method adopts a partition scheme based on classifying the system modal basis into global and local sets of modes. This classification is performed by using a Component Mode Synthesis, in particular a Craig-Bampton transformation, in order to express the system modal base into the modal bases associated with each sub-structure. Then, each sub-structure modal base is classified into global and local set, fist ones associated with the long wavelength motion and second ones with the short wavelength motion. The high frequency limit of each sub-structure is used as frequency frontier between both sets of modes. From this classification, the equations of motion associated with global modes are derived, which include the interaction of local modes by means of corrections in the dynamic stiffness matrix and the force vector of the global problem. The local equations of motion are solved through SEA, where again interactions with global modes arc included through the inclusion of an additional input power into the SEA model. The method has been tested for the calculation of the response function of structures subjected to structural and acoustic loads. Both methods have been firstly tested in simple structures to establish their basis and main characteristics. Methods are also verified in space structures, as satellites and antenna reflectors, providing good results as it is concluded from the comparison with experimental results obtained in both, acoustic and structural load tests. This dissertation opens a wide field of research through which further studies could be performed to obtain efficient and accurate methodologies to appropriately reproduce the vibro-acoustic behaviour of complex systems in the mid-frequency range.
Resumo:
This work proposes an optimization of a semi-supervised Change Detection methodology based on a combination of Change Indices (CI) derived from an image multitemporal data set. For this purpose, SPOT 5 Panchromatic images with 2.5 m spatial resolution have been used, from which three Change Indices have been calculated. Two of them are usually known indices; however the third one has been derived considering the Kullbak-Leibler divergence. Then, these three indices have been combined forming a multiband image that has been used in as input for a Support Vector Machine (SVM) classifier where four different discriminant functions have been tested in order to differentiate between change and no_change categories. The performance of the suggested procedure has been assessed applying different quality measures, reaching in each case highly satisfactory values. These results have demonstrated that the simultaneous combination of basic change indices with others more sophisticated like the Kullback-Leibler distance, and the application of non-parametric discriminant functions like those employees in the SVM method, allows solving efficiently a change detection problem.
Resumo:
Los análisis de fiabilidad representan una herramienta adecuada para contemplar las incertidumbres inherentes que existen en los parámetros geotécnicos. En esta Tesis Doctoral se desarrolla una metodología basada en una linealización sencilla, que emplea aproximaciones de primer o segundo orden, para evaluar eficientemente la fiabilidad del sistema en los problemas geotécnicos. En primer lugar, se emplean diferentes métodos para analizar la fiabilidad de dos aspectos propios del diseño de los túneles: la estabilidad del frente y el comportamiento del sostenimiento. Se aplican varias metodologías de fiabilidad — el Método de Fiabilidad de Primer Orden (FORM), el Método de Fiabilidad de Segundo Orden (SORM) y el Muestreo por Importancia (IS). Los resultados muestran que los tipos de distribución y las estructuras de correlación consideradas para todas las variables aleatorias tienen una influencia significativa en los resultados de fiabilidad, lo cual remarca la importancia de una adecuada caracterización de las incertidumbres geotécnicas en las aplicaciones prácticas. Los resultados también muestran que tanto el FORM como el SORM pueden emplearse para estimar la fiabilidad del sostenimiento de un túnel y que el SORM puede mejorar el FORM con un esfuerzo computacional adicional aceptable. Posteriormente, se desarrolla una metodología de linealización para evaluar la fiabilidad del sistema en los problemas geotécnicos. Esta metodología solamente necesita la información proporcionada por el FORM: el vector de índices de fiabilidad de las funciones de estado límite (LSFs) que componen el sistema y su matriz de correlación. Se analizan dos problemas geotécnicos comunes —la estabilidad de un talud en un suelo estratificado y un túnel circular excavado en roca— para demostrar la sencillez, precisión y eficiencia del procedimiento propuesto. Asimismo, se reflejan las ventajas de la metodología de linealización con respecto a las herramientas computacionales alternativas. Igualmente se muestra que, en el caso de que resulte necesario, se puede emplear el SORM —que aproxima la verdadera LSF mejor que el FORM— para calcular estimaciones más precisas de la fiabilidad del sistema. Finalmente, se presenta una nueva metodología que emplea Algoritmos Genéticos para identificar, de manera precisa, las superficies de deslizamiento representativas (RSSs) de taludes en suelos estratificados, las cuales se emplean posteriormente para estimar la fiabilidad del sistema, empleando la metodología de linealización propuesta. Se adoptan tres taludes en suelos estratificados característicos para demostrar la eficiencia, precisión y robustez del procedimiento propuesto y se discuten las ventajas del mismo con respecto a otros métodos alternativos. Los resultados muestran que la metodología propuesta da estimaciones de fiabilidad que mejoran los resultados previamente publicados, enfatizando la importancia de hallar buenas RSSs —y, especialmente, adecuadas (desde un punto de vista probabilístico) superficies de deslizamiento críticas que podrían ser no-circulares— para obtener estimaciones acertadas de la fiabilidad de taludes en suelos. Reliability analyses provide an adequate tool to consider the inherent uncertainties that exist in geotechnical parameters. This dissertation develops a simple linearization-based approach, that uses first or second order approximations, to efficiently evaluate the system reliability of geotechnical problems. First, reliability methods are employed to analyze the reliability of two tunnel design aspects: face stability and performance of support systems. Several reliability approaches —the first order reliability method (FORM), the second order reliability method (SORM), the response surface method (RSM) and importance sampling (IS)— are employed, with results showing that the assumed distribution types and correlation structures for all random variables have a significant effect on the reliability results. This emphasizes the importance of an adequate characterization of geotechnical uncertainties for practical applications. Results also show that both FORM and SORM can be used to estimate the reliability of tunnel-support systems; and that SORM can outperform FORM with an acceptable additional computational effort. A linearization approach is then developed to evaluate the system reliability of series geotechnical problems. The approach only needs information provided by FORM: the vector of reliability indices of the limit state functions (LSFs) composing the system, and their correlation matrix. Two common geotechnical problems —the stability of a slope in layered soil and a circular tunnel in rock— are employed to demonstrate the simplicity, accuracy and efficiency of the suggested procedure. Advantages of the linearization approach with respect to alternative computational tools are discussed. It is also found that, if necessary, SORM —that approximates the true LSF better than FORM— can be employed to compute better estimations of the system’s reliability. Finally, a new approach using Genetic Algorithms (GAs) is presented to identify the fully specified representative slip surfaces (RSSs) of layered soil slopes, and such RSSs are then employed to estimate the system reliability of slopes, using our proposed linearization approach. Three typical benchmark-slopes with layered soils are adopted to demonstrate the efficiency, accuracy and robustness of the suggested procedure, and advantages of the proposed method with respect to alternative methods are discussed. Results show that the proposed approach provides reliability estimates that improve previously published results, emphasizing the importance of finding good RSSs —and, especially, good (probabilistic) critical slip surfaces that might be non-circular— to obtain good estimations of the reliability of soil slope systems.
Resumo:
En este proyecto, se presenta un informe técnico sobre la cámara Leap Motion y el Software Development Kit correspondiente, el cual es un dispositivo con una cámara de profundidad orientada a interfaces hombre-máquina. Esto es realizado con el propósito de desarrollar una interfaz hombre-máquina basada en un sistema de reconocimiento de gestos de manos. Después de un exhaustivo estudio de la cámara Leap Motion, se han realizado diversos programas de ejemplo con la intención de verificar las capacidades descritas en el informe técnico, poniendo a prueba la Application Programming Interface y evaluando la precisión de las diferentes medidas obtenidas sobre los datos de la cámara. Finalmente, se desarrolla un prototipo de un sistema de reconocimiento de gestos. Los datos sobre la posición y orientación de la punta de los dedos obtenidos de la Leap Motion son usados para describir un gesto mediante un vector descriptor, el cual es enviado a una Máquina Vectores Soporte, utilizada como clasificador multi-clase.
Resumo:
El análisis de imágenes hiperespectrales permite obtener información con una gran resolución espectral: cientos de bandas repartidas desde el espectro infrarrojo hasta el ultravioleta. El uso de dichas imágenes está teniendo un gran impacto en el campo de la medicina y, en concreto, destaca su utilización en la detección de distintos tipos de cáncer. Dentro de este campo, uno de los principales problemas que existen actualmente es el análisis de dichas imágenes en tiempo real ya que, debido al gran volumen de datos que componen estas imágenes, la capacidad de cómputo requerida es muy elevada. Una de las principales líneas de investigación acerca de la reducción de dicho tiempo de procesado se basa en la idea de repartir su análisis en diversos núcleos trabajando en paralelo. En relación a esta línea de investigación, en el presente trabajo se desarrolla una librería para el lenguaje RVC – CAL – lenguaje que está especialmente pensado para aplicaciones multimedia y que permite realizar la paralelización de una manera intuitiva – donde se recogen las funciones necesarias para implementar el clasificador conocido como Support Vector Machine – SVM. Cabe mencionar que este trabajo complementa el realizado en [1] y [2] donde se desarrollaron las funciones necesarias para implementar una cadena de procesado que utiliza el método unmixing para procesar la imagen hiperespectral. En concreto, este trabajo se encuentra dividido en varias partes. La primera de ellas expone razonadamente los motivos que han llevado a comenzar este Trabajo de Investigación y los objetivos que se pretenden conseguir con él. Tras esto, se hace un amplio estudio del estado del arte actual y, en él, se explican tanto las imágenes hiperespectrales como sus métodos de procesado y, en concreto, se detallará el método que utiliza el clasificador SVM. Una vez expuesta la base teórica, nos centraremos en la explicación del método seguido para convertir una versión en Matlab del clasificador SVM optimizado para analizar imágenes hiperespectrales; un punto importante en este apartado es que se desarrolla la versión secuencial del algoritmo y se asientan las bases para una futura paralelización del clasificador. Tras explicar el método utilizado, se exponen los resultados obtenidos primero comparando ambas versiones y, posteriormente, analizando por etapas la versión adaptada al lenguaje RVC – CAL. Por último, se aportan una serie de conclusiones obtenidas tras analizar las dos versiones del clasificador SVM en cuanto a bondad de resultados y tiempos de procesado y se proponen una serie de posibles líneas de actuación futuras relacionadas con dichos resultados. ABSTRACT. Hyperspectral imaging allows us to collect high resolution spectral information: hundred of bands covering from infrared to ultraviolet spectrum. These images have had strong repercussions in the medical field; in particular, we must highlight its use in cancer detection. In this field, the main problem we have to deal with is the real time analysis, because these images have a great data volume and they require a high computational power. One of the main research lines that deals with this problem is related with the analysis of these images using several cores working at the same time. According to this investigation line, this document describes the development of a RVC – CAL library – this language has been widely used for working with multimedia applications and allows an optimized system parallelization –, which joins all the functions needed to implement the Support Vector Machine – SVM - classifier. This research complements the research conducted in [1] and [2] where the necessary functions to implement the unmixing method to analyze hyperspectral images were developed. The document is divided in several chapters. The first of them introduces the motivation of the Master Thesis and the main objectives to achieve. After that, we study the state of the art of some technologies related with this work, like hyperspectral images, their processing methods and, concretely, the SVM classifier. Once we have exposed the theoretical bases, we will explain the followed methodology to translate a Matlab version of the SVM classifier optimized to process an hyperspectral image to RVC – CAL language; one of the most important issues in this chapter is that a sequential implementation is developed and the bases of a future parallelization of the SVM classifier are set. At this point, we will expose the results obtained in the comparative between versions and then, the results of the different steps that compose the SVM in its RVC – CAL version. Finally, we will extract some conclusions related with algorithm behavior and time processing. In the same way, we propose some future research lines according to the results obtained in this document.
Resumo:
Este trabajo presenta una solución al problema del reconocimiento del género de un rostro humano a partir de una imagen. Adoptamos una aproximación que utiliza la cara completa a través de la textura de la cara normalizada y redimensionada como entrada a un clasificador Näive Bayes. Presentamos la técnica de Análisis de Componentes Principales Probabilístico Condicionado-a-la-Clase (CC-PPCA) para reducir la dimensionalidad de los vectores de características para la clasificación y asegurar la asunción de independencia para el clasificador. Esta nueva aproximación tiene la deseable propiedad de presentar un modelo paramétrico sencillo para las marginales. Además, este modelo puede estimarse con muy pocos datos. En los experimentos que hemos desarrollados mostramos que CC-PPCA obtiene un 90% de acierto en la clasificación, resultado muy similar al mejor presentado en la literatura---ABSTRACT---This paper presents a solution to the problem of recognizing the gender of a human face from an image. We adopt a holistic approach by using the cropped and normalized texture of the face as input to a Naïve Bayes classifier. First it is introduced the Class-Conditional Probabilistic Principal Component Analysis (CC-PPCA) technique to reduce the dimensionality of the classification attribute vector and enforce the independence assumption of the classifier. This new approach has the desirable property of a simple parametric model for the marginals. Moreover this model can be estimated with very few data. In the experiments conducted we show that using CCPPCA we get 90% classification accuracy, which is similar result to the best in the literature. The proposed method is very simple to train and implement.