10 resultados para Variable gain amplifier (VGA)

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a pulse shaping and shortening technique for pulses generated from gain switched single mode semiconductor lasers, based on a Mach Zehnder interferometer with variable delay. The spectral and temporal characteristics of the pulses obtained with the proposed technique are investigated with numerical simulations. Experiments are performed with a Distributed Feedback laser and a Vertical Cavity Surface Emitting Laser, emitting at 1.5 µm, obtaining pulse duration reduction of 25-30%. The main asset of the proposed technique is that it can be applied to different devices and pulses, taking advantage of the flexibility of the gain switching technique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose the use of a polarization based interferometer with variable transfer function for the generation of temporally flat top pulses from gain switched single mode semiconductor lasers. The main advantage of the presented technique is its flexibility in terms of input pulse characteristics, as pulse duration, spectral bandwidth and operating wavelength. Theoretical predictions and experimental demonstrations are presented and the proposed technique is applied to two different semiconductor laser sources emitting in the 1550 nm region. Flat top pulses are successfully obtained with input seed pulses with duration ranging from 40 ps to 100 ps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical linear amplifiers such as A, AB and B offer very good linearity suitable for RF power amplifiers. However, its inherent low efficiency limits its use especially in base-stations that manage tens or hundreds of Watts. The use of linearization techniques such as Envelope Elimination and Restoration (EER) allow an increase of efficiency keeping good linearity. This technique requires a very fast dc-dc power converter to provide variable voltage supply to the power amplifier. In this paper, several alternatives are analyzed to implement the envelope amplifier based on a cascade association of a switched dc-dc converter and a linear regulator. A simplified version of this approach is also suitable to operate with Envelope Tracking technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la actualidad, el interés por las plantas de potencia de ciclo combinado de gas y vapor ha experimentado un notable aumento debido a su alto rendimiento, bajo coste de generación y rápida construcción. El objetivo fundamental de la tesis es profundizar en el conocimiento de esta tecnología, insuficientemente conocida hasta el momento debido al gran número de grados de libertad que existen en el diseño de este tipo de instalaciones. El estudio se realizó en varias fases. La primera consistió en analizar y estudiar las distintas tecnologías que se pueden emplear en este tipo de centrales, algunas muy recientes o en fase de investigación, como las turbinas de gas de geometría variable, las turbinas de gas refrigeradas con agua o vapor del ciclo de vapor o las calderas de paso único que trabajan con agua en condiciones supercríticas. Posteriormente se elaboraron los modelos matemáticos que permiten la simulación termodinámica de cada uno de los componentes que integran las plantas, tanto en el punto de diseño como a cargas parciales. Al mismo tiempo, se desarrolló una metodología novedosa que permite resolver el sistema de ecuaciones que resulta de la simulación de cualquier configuración posible de ciclo combinado. De esa forma se puede conocer el comportamiento de cualquier planta en cualquier punto de funcionamiento. Por último se desarrolló un modelo de atribución de costes para este tipo de centrales. Con dicho modelo, los estudios se pueden realizar no sólo desde un punto de vista termodinámico sino también termoeconómico, con lo que se pueden encontrar soluciones de compromiso entre rendimiento y coste, asignar costes de producción, determinar curvas de oferta, beneficios económicos de la planta y delimitar el rango de potencias donde la planta es rentable. El programa informático, desarrollado en paralelo con los modelos de simulación, se ha empleado para obtener resultados de forma intensiva. El estudio de los resultados permite profundizar ampliamente en el conocimiento de la tecnología y, así, desarrollar una metodología de diseño de este tipo de plantas bajo un criterio termoeconómico. ABSTRACT The growing energy demand and the need of shrinking costs have led to the design of high efficiency and quick installation power plants. The success of combined cycle gas turbine power plants lies on their high efficiency, low cost and short construction lead time. The main objective of the work is to study in detail this technology, which is not thoroughly known owing to the great number of degrees of freedom that exist in the design of this kind of power plants. The study is divided into three parts. Firstly, the different technologies and components that could be used in any configuration of a combined cycle gas turbine power plant are studied. Some of them could be of recent technology, such as the variable inlet guide vane compressors, the H-technology for gas turbine cooling or the once-through heat recovery steam generators, used with water at supercritical conditions. Secondly, a mathematical model has been developed to simulate at full and part load the components of the power plant. At the same time, a new methodology is proposed in order to solve the equation system resulting for any possible power plant configuration. Therefore, any combined cycle gas turbine could be simulated at any part load condition. Finally a themoeconomic model is proposed. This model allows studying the power plant not only from a thermodynamic point of view but also from a thermoeconomic one. Likewise, it allows determining the generating costs or the cash flow, thus achieving a trade off between efficiency and cost. Likewise, the model calculates the part load range where the power plant is profitable. Once the thermodynamic and thermoeconomic models are developed, they are intensively used in order to gain knowledge in the combined cycle gas turbine technology and, in this way, to propose a methodology aimed at the design of this kind of power plants from a thermoeconomic point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an experimental study on the generation of high-peak-power short optical pulses from a fully integrated master-oscillator power-amplifier emitting at 1.5 μm. High-peak-power (2.7 W) optical pulses with short duration (100 ps) have been generated by gain switching the master oscillator under optimized driving conditions. The static and dynamic characteristics of the device have been studied as a function of the driving conditions. The ripples appearing in the power-current characteristics under cw conditions have been attributed to mode hopping between the master oscillator resonant mode and the Fabry-Perot modes of the entire device cavity. Although compound cavity effects have been evidenced to affect the static and dynamic performance of the device, we have demonstrated that trains of single-mode short optical pulses at gigahertz frequencies can be conveniently generated in these devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years, RF power amplifiers are taking advantage of the switched dc-dc converters to use them in several architectures that may improve the efficiency of the amplifier, keeping a good linearity. The use of linearization techniques such as Envelope Elimination and Restoration(EER) and Envelope Tracking (ET) requires a very fast dc-dc power converter to provide variable voltage supply to the power amplifier but theoretically the efficiency can be much higher than using the classical amplifiers belonging to classes A, B or AB. The purpose of this paper is to analyze the state of the art of the power converters used as envelope amplifiers in this application. The power topologies will be explored and several important parameters such as efficiency, bandwidth will be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Envelope Tracking (ET) and Envelope Elimination and Restoration (EER) are two techniques that have been used as a solution for highly efficient linear RF Power Amplifiers (PA). In both techniques the most important part is a dc-dc converter called envelope amplifier that has to supply the RF PA with variable voltage. Besides high efficiency, its bandwidth is very important as well. Envelope amplifier based on parallel combination of a switching dc-dc converter and a linear regulator is an architecture that is widely used due to its simplicity. In this paper we discuss about theoretical limitations of this architecture regarding its efficiency and we demonstrate two possible way of its implementation. In order to derive the presented conclusions, a theoretical model of envelope amplifier's efficiency has been presented. Additionally, the benefits of the new emerging GaN technology for this application have been shown as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years, RF power amplifiers are taking advantage of the switched dc-dc converters to use them in several architectures that may improve the efficiency of the amplifier, keeping a good linearity. The use of linearization techniques such as Envelope Elimination and Restoration (EER) and Envelope Tracking (ET) requires a very fast dc-dc power converter to provide variable voltage supply to the power amplifier but theoretically the efficiency can be much higher than using the classical amplifiers belonging to classes A, B or AB. The purpose of this paper is to analyze the state of the art of the power converters used as envelope amplifiers in this application where a fast output voltage variation is required. The power topologies will be explored and several important parameters such as efficiency, bandwidth and output voltage range will be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study experimentally the dynamic properties of a fully integrated high power master-oscillator power-amplifier emitting at 1.5 μm under continuous wave and gain-switching conditions. High peak power (2.7 W) optical pulses with short duration (~ 110 ps) have been generated by gain switching the master-oscillator. We show the existence of working points at very close driving conditions with stable or unstable regimes caused by the compound cavity effects. The optical and radio-frequency spectra of stable and unstable operating points are analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a single stage converter for a high bandwidth and a high efficiency envelope amplifier. The current ripple cancellation technique is applied to a synchronous buck converter to cancel the output current ripple and to decrease the switching frequency without a reduction in the large signal bandwidth. The converter is modeled and the new design with ripple cancellation circuit is detailed. The advantages of the proposed design are presented and validated experimentally. The transfer function of the output filter of the buck converter with ripple cancellation circuit has been modeled and compared to measurements, showing a good correspondence. Experimental validation is provided at 4MHz of switching frequency for DC and variable output voltage for a sinusoidal and a 64QAM signal. Additional experimental validation of the efficiency improvement is provided, compared to the equivalent design (same bandwidth and output voltage ripple) of the conventional buck converter.