2 resultados para Vapor-Tecnología

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la actualidad, el interés por las plantas de potencia de ciclo combinado de gas y vapor ha experimentado un notable aumento debido a su alto rendimiento, bajo coste de generación y rápida construcción. El objetivo fundamental de la tesis es profundizar en el conocimiento de esta tecnología, insuficientemente conocida hasta el momento debido al gran número de grados de libertad que existen en el diseño de este tipo de instalaciones. El estudio se realizó en varias fases. La primera consistió en analizar y estudiar las distintas tecnologías que se pueden emplear en este tipo de centrales, algunas muy recientes o en fase de investigación, como las turbinas de gas de geometría variable, las turbinas de gas refrigeradas con agua o vapor del ciclo de vapor o las calderas de paso único que trabajan con agua en condiciones supercríticas. Posteriormente se elaboraron los modelos matemáticos que permiten la simulación termodinámica de cada uno de los componentes que integran las plantas, tanto en el punto de diseño como a cargas parciales. Al mismo tiempo, se desarrolló una metodología novedosa que permite resolver el sistema de ecuaciones que resulta de la simulación de cualquier configuración posible de ciclo combinado. De esa forma se puede conocer el comportamiento de cualquier planta en cualquier punto de funcionamiento. Por último se desarrolló un modelo de atribución de costes para este tipo de centrales. Con dicho modelo, los estudios se pueden realizar no sólo desde un punto de vista termodinámico sino también termoeconómico, con lo que se pueden encontrar soluciones de compromiso entre rendimiento y coste, asignar costes de producción, determinar curvas de oferta, beneficios económicos de la planta y delimitar el rango de potencias donde la planta es rentable. El programa informático, desarrollado en paralelo con los modelos de simulación, se ha empleado para obtener resultados de forma intensiva. El estudio de los resultados permite profundizar ampliamente en el conocimiento de la tecnología y, así, desarrollar una metodología de diseño de este tipo de plantas bajo un criterio termoeconómico. ABSTRACT The growing energy demand and the need of shrinking costs have led to the design of high efficiency and quick installation power plants. The success of combined cycle gas turbine power plants lies on their high efficiency, low cost and short construction lead time. The main objective of the work is to study in detail this technology, which is not thoroughly known owing to the great number of degrees of freedom that exist in the design of this kind of power plants. The study is divided into three parts. Firstly, the different technologies and components that could be used in any configuration of a combined cycle gas turbine power plant are studied. Some of them could be of recent technology, such as the variable inlet guide vane compressors, the H-technology for gas turbine cooling or the once-through heat recovery steam generators, used with water at supercritical conditions. Secondly, a mathematical model has been developed to simulate at full and part load the components of the power plant. At the same time, a new methodology is proposed in order to solve the equation system resulting for any possible power plant configuration. Therefore, any combined cycle gas turbine could be simulated at any part load condition. Finally a themoeconomic model is proposed. This model allows studying the power plant not only from a thermodynamic point of view but also from a thermoeconomic one. Likewise, it allows determining the generating costs or the cash flow, thus achieving a trade off between efficiency and cost. Likewise, the model calculates the part load range where the power plant is profitable. Once the thermodynamic and thermoeconomic models are developed, they are intensively used in order to gain knowledge in the combined cycle gas turbine technology and, in this way, to propose a methodology aimed at the design of this kind of power plants from a thermoeconomic point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente estudio se enmarca en el proyecto GreenMVC en el que colabora el CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas). Este proyecto tiene como objetivo el análisis y optimización de la tecnología de desalación de compresión mecánica de vapor (MVC), para ser alimentado mediante fuentes de energía renovables. El empleo de fuentes de energía renovables para la alimentación de procesos de desalación es una opción prometedora especialmente en áreas remotas y regiones áridas donde las fuentes de energía convencionales son excesivamente caras o no están disponibles. En este proyecto se analiza la viabilidad tanto técnica como económica de un sistema de desalación de agua mediante compresión mecánica de vapor (MVC) activado por energía eólica, como una alternativa para el abastecimiento de agua limpia respetuosa con el medioambiente. Una de las principales dificultades del accionamiento de la desaladora MVC mediante energía eólica, y en lo que principalmente se centra este proyecto, es la caracterización de su funcionamiento ante las variaciones de potencia subministrada debido a la naturaleza variable del recurso eólico. Generalmente, estos sistemas de desalación están conectados a la red, trabajando constantemente en su punto de funcionamiento nominal. Para poder obtener la relación entre la potencia suministrada y el caudal obtenido para una desaladora, previamente, se ha realizado un modelo termodinámico de la desaladora y, a partir de éste, se han analizado los principios de funcionamiento de este proceso de desalación. Modelando también la energía eólica, finalmente se crea un modelo único del conjunto conformado por la desaladora MVC y el aerogenerador capaz de caracterizar el funcionamiento a régimen variable y predecir la producción, de modo que se pueda determinar la viabilidad técnica del proyecto. Otro de los objetivos principales, era analizar la viabilidad económica. Para ello, también empleando el modelo realizado, se ha estudiado el coste de la desalación MVC yde la generación de energía eléctrica mediante energía eólica. Consiguiendo, finalmente,estimar el coste de desalación en función de el diseño de la desaladora empleada, el tamaño del aerogenerador, y del recurso eólico del emplazamiento.