3 resultados para VSC

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a fuzzy based Variable Structure Control (VSC) with guaranteed stability is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. The main contribution of this work is that, firstly, new functions for chattering reduction and error convergence without sacrificing invariant properties are proposed, which is considered the main drawback of the VSC control. Secondly, the global stability of the controlled system is guaranteed.The well known weighting parameters approach, is used in this paper to optimize local and global approximation and modeling capability of T-S fuzzy model.A one link robot is chosen as a nonlinear unstable system to evaluate the robustness, effectiveness and remarkable performance of optimization approach and the high accuracy obtained in approximating nonlinear systems in comparison with the original T-S model. Simulation results indicate the potential and generality of the algorithm. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved with the proposed FLC-VSC controller. The effectiveness of the proposed controller is proven in front of disturbances and noise effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a fuzzy logic controller (FLC) based variable structure control (VSC) is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. New functions for chattering reduction and error convergence without sacrificing invariant properties are proposed. The main feature of the proposed method is that the switching function is added as an additional fuzzy variable and will be introduced in the premise part of the fuzzy rules; together with the state variables. In this work, a tuning of the well known weighting parameters approach is proposed to optimize local and global approximation and modelling capability of the Takagi-Sugeno (T-S) fuzzy model to improve the choice of the performance index and minimize it. The main problem encountered is that the T-S identification method can not be applied when the membership functions are overlapped by pairs. This in turn restricts the application of the T-S method because this type of membership function has been widely used in control applications. The approach developed here can be considered as a generalized version of the T-S method. An inverted pendulum mounted on a cart is chosen to evaluate the robustness, effectiveness, accuracy and remarkable performance of the proposed estimation approach in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the chattering reduction algorithm. In this paper, we prove that the proposed estimation algorithm converge the very fast, thereby making it very practical to use. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dentro de las técnicas de control de procesos no lineales, los controladores de estructura variable con modos deslizantes (VSC-SM en sus siglas en inglés) han demostrado ser una solución robusta, por lo cual han sido ampliamente estudiados en las cuatro últimas décadas. Desde los años ochenta se han presentado varios trabajos enfocados a especificar controladores VSC aplicados a sistemas de tiempo discreto (DVSC), siendo uno de los mayores intereses de análisis obtener las mismas prestaciones de robustez e invarianza de los controladores VSC-SM. El objetivo principal del trabajo de Tesis Doctoral consiste en estudiar, analizar y proponer unos esquemas de diseño de controladores DVSC en procesos multivariable tanto lineales como no lineales. De dicho estudio se propone una nueva filosofía de diseño de superficies deslizantes estables donde se han considerado aspectos hasta ahora no estudiados en el uso de DVSC-SM como son las limitaciones físicas de los actuadores y la dinámica deslizante no ideal. Lo más novedoso es 1) la propuesta de una nueva metodología de diseño de superficies deslizantes aplicadas a sistemas MIMO lineales y la extensión del mismo al caso de sistemas multivariables no lineales y 2) la definición de una nueva ley de alcance y de una ley de control robusta aplicada a sistemas MIMO, tanto lineales como no lineales, incluyendo un esquema de reducción de chattering. Finalmente, con el fin de ilustrar la eficiencia de los esquemas presentados, se incluyen ejemplos numéricos relacionados con el tema tratado en cada uno de los capítulos de la memoria. ABSTRACT Over the last four decades, variable structure controllers with sliding mode (VSC-SM) have been extensively studied, demonstrating to be a robust solution among robust nonlinear processes control techniques. Since the late 80s, several research works have been focused on the application of VSC controllers applied to discrete time or sampled data systems, which are known as DVSC-SM, where the most extensive source of analysis has been devoted to the robustness and invariance properties of VSC-SM controllers when applied to discrete systems. The main aim of this doctoral thesis work is to study, analyze and propose a design scheme of DVSC-SM controllers for lineal and nonlinear multivariable discrete time processes. For this purpose, a new design philosophy is proposed, where various design features have been considered that have not been analyzed in DVSC design approaches. Among them, the physical limitations and the nonideal dynamic sliding mode dynamics. The most innovative aspect is the inclusion of a new design methodology applied to lineal sliding surfaces MIMO systems and the extension to nonlinear multivariable systems, in addition to a new robust control law applied to lineal and nonlinear MIMO systems, including a chattering reduction scheme. Finally, to illustrate the efficiency of the proposed schemes, several numerical examples applied to lineal and nonlinear systems are included.