5 resultados para User modelling
em Universidad Politécnica de Madrid
Resumo:
Los servicios telemáticos han transformando la mayoría de nuestras actividades cotidianas y ofrecen oportunidades sin precedentes con características como, por ejemplo, el acceso ubicuo, la disponibilidad permanente, la independencia del dispositivo utilizado, la multimodalidad o la gratuidad, entre otros. No obstante, los beneficios que destacan en cuanto se reflexiona sobre estos servicios, tienen como contrapartida una serie de riesgos y amenazas no tan obvios, ya que éstos se nutren de y tratan con datos personales, lo cual suscita dudas respecto a la privacidad de las personas. Actualmente, las personas que asumen el rol de usuarios de servicios telemáticos generan constantemente datos digitales en distintos proveedores. Estos datos reflejan parte de su intimidad, de sus características particulares, preferencias, intereses, relaciones sociales, hábitos de consumo, etc. y lo que es más controvertido, toda esta información se encuentra bajo la custodia de distintos proveedores que pueden utilizarla más allá de las necesidades y el control del usuario. Los datos personales y, en particular, el conocimiento sobre los usuarios que se puede extraer a partir de éstos (modelos de usuario) se han convertido en un nuevo activo económico para los proveedores de servicios. De este modo, estos recursos se pueden utilizar para ofrecer servicios centrados en el usuario basados, por ejemplo, en la recomendación de contenidos, la personalización de productos o la predicción de su comportamiento, lo cual permite a los proveedores conectar con los usuarios, mantenerlos, involucrarlos y en definitiva, fidelizarlos para garantizar el éxito de un modelo de negocio. Sin embargo, dichos recursos también pueden utilizarse para establecer otros modelos de negocio que van más allá de su procesamiento y aplicación individual por parte de un proveedor y que se basan en su comercialización y compartición con otras entidades. Bajo esta perspectiva, los usuarios sufren una falta de control sobre los datos que les refieren, ya que esto depende de la voluntad y las condiciones impuestas por los proveedores de servicios, lo cual implica que habitualmente deban enfrentarse ante la disyuntiva de ceder sus datos personales o no acceder a los servicios telemáticos ofrecidos. Desde el sector público se trata de tomar medidas que protejan a los usuarios con iniciativas y legislaciones que velen por su privacidad y que aumenten el control sobre sus datos personales, a la vez que debe favorecer el desarrollo económico propiciado por estos proveedores de servicios. En este contexto, esta tesis doctoral propone una arquitectura y modelo de referencia para un ecosistema de intercambio de datos personales centrado en el usuario que promueve la creación, compartición y utilización de datos personales y modelos de usuario entre distintos proveedores, al mismo tiempo que ofrece a los usuarios las herramientas necesarias para ejercer su control en cuanto a la cesión y uso de sus recursos personales y obtener, en su caso, distintos incentivos o contraprestaciones económicas. Las contribuciones originales de la tesis son la especificación y diseño de una arquitectura que se apoya en un proceso de modelado distribuido que se ha definido en el marco de esta investigación. Éste se basa en el aprovechamiento de recursos que distintas entidades (fuentes de datos) ofrecen para generar modelos de usuario enriquecidos que cubren las necesidades específicas de terceras entidades, considerando la participación del usuario y el control sobre sus recursos personales (datos y modelos de usuario). Lo anterior ha requerido identificar y caracterizar las fuentes de datos con potencial de abastecer al ecosistema, determinar distintos patrones para la generación de modelos de usuario a partir de datos personales distribuidos y heterogéneos y establecer una infraestructura para la gestión de identidad y privacidad que permita a los usuarios expresar sus preferencias e intereses respecto al uso y compartición de sus recursos personales. Además, se ha definido un modelo de negocio de referencia que sustenta las investigaciones realizadas y que ha sido particularizado en dos ámbitos de aplicación principales, en concreto, el sector de publicidad en redes sociales y el sector financiero para la implantación de nuevos servicios. Finalmente, cabe destacar que las contribuciones de esta tesis han sido validadas en el contexto de distintos proyectos de investigación industrial aplicada y también en el marco de proyectos fin de carrera que la autora ha tutelado o en los que ha colaborado. Los resultados obtenidos han originado distintos méritos de investigación como dos patentes en explotación, la publicación de un artículo en una revista con índice de impacto y diversos artículos en congresos internacionales de relevancia. Algunos de éstos han sido galardonados con premios de distintas instituciones, así como en las conferencias donde han sido presentados. ABSTRACT Information society services have changed most of our daily activities, offering unprecedented opportunities with certain characteristics, such as: ubiquitous access, permanent availability, device independence, multimodality and free-of-charge services, among others. However, all the positive aspects that emerge when thinking about these services have as counterpart not-so-obvious threats and risks, because they feed from and use personal data, thus creating concerns about peoples’ privacy. Nowadays, people that play the role of user of services are constantly generating digital data in different service providers. These data reflect part of their intimacy, particular characteristics, preferences, interests, relationships, consumer behavior, etc. Controversy arises because this personal information is stored and kept by the mentioned providers that can use it beyond the user needs and control. Personal data and, in particular, the knowledge about the user that can be obtained from them (user models) have turned into a new economic asset for the service providers. In this way, these data and models can be used to offer user centric services based, for example, in content recommendation, tailored-products or user behavior, all of which allows connecting with the users, keeping them more engaged and involved with the provider, finally reaching customer loyalty in order to guarantee the success of a business model. However, these resources can be used to establish a different kind of business model; one that does not only processes and individually applies personal data, but also shares and trades these data with other entities. From that perspective, the users lack control over their referred data, because it depends from the conditions imposed by the service providers. The consequence is that the users often face the following dilemma: either giving up their personal data or not using the offered services. The Public Sector takes actions in order to protect the users approving, for example, laws and legal initiatives that reinforce privacy and increase control over personal data, while at the same time the authorities are also key players in the economy development that derives from the information society services. In this context, this PhD Dissertation proposes an architecture and reference model to achieve a user-centric personal data ecosystem that promotes the creation, sharing and use of personal data and user models among different providers, while offering users the tools to control who can access which data and why and if applicable, to obtain different incentives. The original contributions obtained are the specification and design of an architecture that supports a distributed user modelling process defined by this research. This process is based on leveraging scattered resources of heterogeneous entities (data sources) to generate on-demand enriched user models that fulfill individual business needs of third entities, considering the involvement of users and the control over their personal resources (data and user models). This has required identifying and characterizing data sources with potential for supplying resources, defining different generation patterns to produce user models from scattered and heterogeneous data, and establishing identity and privacy management infrastructures that allow users to set their privacy preferences regarding the use and sharing of their resources. Moreover, it has also been proposed a reference business model that supports the aforementioned architecture and this has been studied for two application fields: social networks advertising and new financial services. Finally, it has to be emphasized that the contributions obtained in this dissertation have been validated in the context of several national research projects and master thesis that the author has directed or has collaborated with. Furthermore, these contributions have produced different scientific results such as two patents and different publications in relevant international conferences and one magazine. Some of them have been awarded with different prizes.
Resumo:
It is easy to get frustrated at spoken conversational agents (SCAs), perhaps because they seem to be callous. By and large, the quality of human-computer interaction is affected due to the inability of the SCAs to recognise and adapt to user emotional state. Now with the mass appeal of artificially-mediated communication, there has been an increasing need for SCAs to be socially and emotionally intelligent, that is, to infer and adapt to their human interlocutors’ emotions on the fly, in order to ascertain an affective, empathetic and naturalistic interaction. An enhanced quality of interaction would reduce users’ frustrations and consequently increase their satisfactions. These reasons have motivated the development of SCAs towards including socio-emotional elements, turning them into affective and socially-sensitive interfaces. One barrier to the creation of such interfaces has been the lack of methods for modelling emotions in a task-independent environment. Most emotion models for spoken dialog systems are task-dependent and thus cannot be used “as-is” in different applications. This Thesis focuses on improving this, in which it concerns computational modeling of emotion, personality and their interrelationship for task-independent autonomous SCAs. The generation of emotion is driven by needs, inspired by human’s motivational systems. The work in this Thesis is organised in three stages, each one with its own contribution. The first stage involved defining, integrating and quantifying the psychological-based motivational and emotional models sourced from. Later these were transformed into a computational model by implementing them into software entities. The computational model was then incorporated and put to test with an existing SCA host, a HiFi-control agent. The second stage concerned automatic prediction of affect, which has been the main challenge towards the greater aim of infusing social intelligence into the HiFi agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. In this stage, we attempted to address part of this challenge by considering the roles of user satisfaction ratings and conversational/dialog features as the respective target and predictors in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. The final stage concerned the evaluation of the emotional model through the HiFi agent. A series of user studies with 70 subjects were conducted in a real-time environment, each in a different phase and with its own conditions. All the studies involved the comparisons between the baseline non-modified and the modified agent. The findings have gone some way towards enhancing our understanding of the utility of emotion in spoken dialog systems in several ways; first, an SCA should not express its emotions blindly, albeit positive. Rather, it should adapt its emotions to user states. Second, low performance in an SCA may be compensated by the exploitation of emotion. Third, the expression of emotion through the exploitation of prosody could better improve users’ perceptions of an SCA compared to exploiting emotions through just lexical contents. Taken together, these findings not only support the success of the emotional model, but also provide substantial evidences with respect to the benefits of adding emotion in an SCA, especially in mitigating users’ frustrations and ultimately improving their satisfactions. Resumen Es relativamente fácil experimentar cierta frustración al interaccionar con agentes conversacionales (Spoken Conversational Agents, SCA), a menudo porque parecen ser un poco insensibles. En general, la calidad de la interacción persona-agente se ve en cierto modo afectada por la incapacidad de los SCAs para identificar y adaptarse al estado emocional de sus usuarios. Actualmente, y debido al creciente atractivo e interés de dichos agentes, surge la necesidad de hacer de los SCAs unos seres cada vez más sociales y emocionalmente inteligentes, es decir, con capacidad para inferir y adaptarse a las emociones de sus interlocutores humanos sobre la marcha, de modo que la interacción resulte más afectiva, empática y, en definitiva, natural. Una interacción mejorada en este sentido permitiría reducir la posible frustración de los usuarios y, en consecuencia, mejorar el nivel de satisfacción alcanzado por los mismos. Estos argumentos justifican y motivan el desarrollo de nuevos SCAs con capacidades socio-emocionales, dotados de interfaces afectivas y socialmente sensibles. Una de las barreras para la creación de tales interfaces ha sido la falta de métodos de modelado de emociones en entornos independientes de tarea. La mayoría de los modelos emocionales empleados por los sistemas de diálogo hablado actuales son dependientes de tarea y, por tanto, no pueden utilizarse "tal cual" en diferentes dominios o aplicaciones. Esta tesis se centra precisamente en la mejora de este aspecto, la definición de modelos computacionales de las emociones, la personalidad y su interrelación para SCAs autónomos e independientes de tarea. Inspirada en los sistemas motivacionales humanos en el ámbito de la psicología, la tesis propone un modelo de generación/producción de la emoción basado en necesidades. El trabajo realizado en la presente tesis está organizado en tres etapas diferenciadas, cada una con su propia contribución. La primera etapa incluyó la definición, integración y cuantificación de los modelos motivacionales de partida y de los modelos emocionales derivados a partir de éstos. Posteriormente, dichos modelos emocionales fueron plasmados en un modelo computacional mediante su implementación software. Este modelo computacional fue incorporado y probado en un SCA anfitrión ya existente, un agente con capacidad para controlar un equipo HiFi, de alta fidelidad. La segunda etapa se orientó hacia el reconocimiento automático de la emoción, aspecto que ha constituido el principal desafío en relación al objetivo mayor de infundir inteligencia social en el agente HiFi. En los últimos años, los estudios sobre reconocimiento de emociones a partir de la voz han pasado de emplear datos actuados a usar datos reales en los que la presencia u observación de emociones se produce de una manera mucho más sutil. El reconocimiento de emociones bajo estas condiciones resulta mucho más complicado y esta dificultad se pone de manifiesto en tareas tales como el etiquetado y el aprendizaje automático. En esta etapa, se abordó el problema del reconocimiento de las emociones del usuario a partir de características o métricas derivadas del propio diálogo usuario-agente. Gracias a dichas métricas, empleadas como predictores o indicadores del grado o nivel de satisfacción alcanzado por el usuario, fue posible discriminar entre satisfacción y frustración, las dos emociones prevalentes durante la interacción usuario-agente. La etapa final corresponde fundamentalmente a la evaluación del modelo emocional por medio del agente Hifi. Con ese propósito se llevó a cabo una serie de estudios con usuarios reales, 70 sujetos, interaccionando con diferentes versiones del agente Hifi en tiempo real, cada uno en una fase diferente y con sus propias características o capacidades emocionales. En particular, todos los estudios realizados han profundizado en la comparación entre una versión de referencia del agente no dotada de ningún comportamiento o característica emocional, y una versión del agente modificada convenientemente con el modelo emocional propuesto. Los resultados obtenidos nos han permitido comprender y valorar mejor la utilidad de las emociones en los sistemas de diálogo hablado. Dicha utilidad depende de varios aspectos. En primer lugar, un SCA no debe expresar sus emociones a ciegas o arbitrariamente, incluso aunque éstas sean positivas. Más bien, debe adaptar sus emociones a los diferentes estados de los usuarios. En segundo lugar, un funcionamiento relativamente pobre por parte de un SCA podría compensarse, en cierto modo, dotando al SCA de comportamiento y capacidades emocionales. En tercer lugar, aprovechar la prosodia como vehículo para expresar las emociones, de manera complementaria al empleo de mensajes con un contenido emocional específico tanto desde el punto de vista léxico como semántico, ayuda a mejorar la percepción por parte de los usuarios de un SCA. Tomados en conjunto, los resultados alcanzados no sólo confirman el éxito del modelo emocional, sino xv que constituyen además una evidencia decisiva con respecto a los beneficios de incorporar emociones en un SCA, especialmente en cuanto a reducir el nivel de frustración de los usuarios y, en última instancia, mejorar su satisfacción.
Resumo:
Carbon (C) and nitrogen (N) process-based models are important tools for estimating and reporting greenhouse gas emissions and changes in soil C stocks. There is a need for continuous evaluation, development and adaptation of these models to improve scientific understanding, national inventories and assessment of mitigation options across the world. To date, much of the information needed to describe different processes like transpiration, photosynthesis, plant growth and maintenance, above and below ground carbon dynamics, decomposition and nitrogen mineralization. In ecosystem models remains inaccessible to the wider community, being stored within model computer source code, or held internally by modelling teams. Here we describe the Global Research Alliance Modelling Platform (GRAMP), a web-based modelling platform to link researchers with appropriate datasets, models and training material. It will provide access to model source code and an interactive platform for researchers to form a consensus on existing methods, and to synthesize new ideas, which will help to advance progress in this area. The platform will eventually support a variety of models, but to trial the platform and test the architecture and functionality, it was piloted with variants of the DNDC model. The intention is to form a worldwide collaborative network (a virtual laboratory) via an interactive website with access to models and best practice guidelines; appropriate datasets for testing, calibrating and evaluating models; on-line tutorials and links to modelling and data provider research groups, and their associated publications. A graphical user interface has been designed to view the model development tree and access all of the above functions.
Resumo:
In the smart building control industry, creating a platform to integrate different communication protocols and ease the interaction between users and devices is becoming increasingly important. BATMP is a platform designed to achieve this goal. In this paper, the authors describe a novel mechanism for information exchange, which introduces a new concept, Parameter, and uses it as the common object among all the BATMP components: Gateway Manager, Technology Manager, Application Manager, Model Manager and Data Warehouse. Parameter is an object which represents a physical magnitude and contains the information about its presentation, available actions, access type, etc. Each component of BATMP has a copy of the parameters. In the Technology Manager, three drivers for different communication protocols, KNX, CoAP and Modbus, are implemented to convert devices into parameters. In the Gateway Manager, users can control the parameters directly or by defining a scenario. In the Application Manager, the applications can subscribe to parameters and decide the values of parameters by negotiating. Finally, a Negotiator is implemented in the Model Manager to notify other components about the changes taking place in any component. By applying this mechanism, BATMP ensures the simultaneous and concurrent communication among users, applications and devices.
Resumo:
The conception of IoT (Internet of Things) is accepted as the future tendency of Internet among academia and industry. It will enable people and things to be connected at anytime and anyplace, with anything and anyone. IoT has been proposed to be applied into many areas such as Healthcare, Transportation,Logistics, and Smart environment etc. However, this thesis emphasizes on the home healthcare area as it is the potential healthcare model to solve many problems such as the limited medical resources, the increasing demands for healthcare from elderly and chronic patients which the traditional model is not capable of. A remarkable change in IoT in semantic oriented vision is that vast sensors or devices are involved which could generate enormous data. Methods to manage the data including acquiring, interpreting, processing and storing data need to be implemented. Apart from this, other abilities that IoT is not capable of are concluded, namely, interoperation, context awareness and security & privacy. Context awareness is an emerging technology to manage and take advantage of context to enable any type of system to provide personalized services. The aim of this thesis is to explore ways to facilitate context awareness in IoT. In order to realize this objective, a preliminary research is carried out in this thesis. The most basic premise to realize context awareness is to collect, model, understand, reason and make use of context. A complete literature review for the existing context modelling and context reasoning techniques is conducted. The conclusion is that the ontology-based context modelling and ontology-based context reasoning are the most promising and efficient techniques to manage context. In order to fuse ontology into IoT, a specific ontology-based context awareness framework is proposed for IoT applications. In general, the framework is composed of eight components which are hardware, UI (User Interface), Context modelling, Context fusion, Context reasoning, Context repository, Security unit and Context dissemination. Moreover, on the basis of TOVE (Toronto Virtual Enterprise), a formal ontology developing methodology is proposed and illustrated which consists of four stages: Specification & Conceptualization, Competency Formulation, Implementation and Validation & Documentation. In addition, a home healthcare scenario is elaborated by listing its well-defined functionalities. Aiming at representing this specific scenario, the proposed ontology developing methodology is applied and the ontology-based model is developed in a free and open-source ontology editor called Protégé. Finally, the accuracy and completeness of the proposed ontology are validated to show that this proposed ontology is able to accurately represent the scenario of interest.