2 resultados para Uruguay. Alta Corte de Justicia.
em Universidad Politécnica de Madrid
Resumo:
La mejora continua de los procesos de fabricación es fundamental para alcanzar niveles óptimos de productividad, calidad y coste en la producción de componentes y productos. Para ello es necesario disponer de modelos que relacionen de forma precisa las variables que intervienen en el proceso de corte. Esta investigación tiene como objetivo determinar la influencia de la velocidad de corte y el avance en el desgaste del flanco de los insertos de carburos recubiertos GC1115 y GC2015 y en la rugosidad superficial de la pieza mecanizada de la pieza en el torneado de alta velocidad en seco del acero AISI 316L. Se utilizaron entre otros los métodos de observación científica, experimental, medición, inteligencia artificial y estadísticos. El inserto GC1115 consigue el mejor resultado de acuerdo al gráfico de medias y de las ecuaciones de regresión múltiple de desgaste del flanco para v= 350 m/min, mientras que para las restantes velocidades el inserto GC2015 consigue el mejor desempeño. El mejor comportamiento en cuanto a la rugosidad superficial de la pieza mecanizada se obtuvo con el inserto GC1115 en las velocidades de 350 m/min y 400 m/min, en la velocidad de 450 m/min el mejor resultado correspondió al inserto GC2015. Se analizaron dos criterios nuevos, el coeficiente de vida útil de la herramienta de corte en relación al volumen de metal cortado y el coeficiente de rugosidad superficial de la pieza mecanizada en relación al volumen de metal cortado. Fueron determinados los modelos de regresión múltiple que permitieron calcular el tiempo de mecanizado de los insertos sin que alcanzaran el límite del criterio de desgaste del flanco. Los modelos desarrollados fueron evaluados por sus capacidades de predicción con los valores medidos experimentalmente. ABSTRACT The continuous improvement of manufacturing processes is critical to achieving optimal levels of productivity, quality and cost in the production of components and products. This is necessary to have models that accurately relate the variables involved in the cutting process. This research aims to determine the influence of the cutting speed and feed on the flank wear of carbide inserts coated by GC1115 and GC2015 and the surface roughness of the workpiece for turning dry high speed steel AISI 316L. Among various scientific methods this study were used of observation, experiment, measurement, statistical and artificial intelligence. The GC1115 insert gets the best result according to the graph of means and multiple regression equations of flank wear for v = 350 m / min, while for the other speeds the GC2015 insert gets the best performance. Two approaches are discussed, the life ratio of the cutting tool relative to the cut volume and surface roughness coefficient in relation to the cut volume. Multiple regression models were determined to calculate the machining time of the inserts without reaching the limit of the criterion flank wear. The developed models were evaluated for their predictive capabilities with the experimentally measured values.
Resumo:
El objetivo principal de esta tesis doctoral es profundizar en el análisis y diseño de un sistema inteligente para la predicción y control del acabado superficial en un proceso de fresado a alta velocidad, basado fundamentalmente en clasificadores Bayesianos, con el prop´osito de desarrollar una metodolog´ıa que facilite el diseño de este tipo de sistemas. El sistema, cuyo propósito es posibilitar la predicción y control de la rugosidad superficial, se compone de un modelo aprendido a partir de datos experimentales con redes Bayesianas, que ayudar´a a comprender los procesos dinámicos involucrados en el mecanizado y las interacciones entre las variables relevantes. Dado que las redes neuronales artificiales son modelos ampliamente utilizados en procesos de corte de materiales, también se incluye un modelo para fresado usándolas, donde se introdujo la geometría y la dureza del material como variables novedosas hasta ahora no estudiadas en este contexto. Por lo tanto, una importante contribución en esta tesis son estos dos modelos para la predicción de la rugosidad superficial, que se comparan con respecto a diferentes aspectos: la influencia de las nuevas variables, los indicadores de evaluación del desempeño, interpretabilidad. Uno de los principales problemas en la modelización con clasificadores Bayesianos es la comprensión de las enormes tablas de probabilidad a posteriori producidas. Introducimos un m´etodo de explicación que genera un conjunto de reglas obtenidas de árboles de decisión. Estos árboles son inducidos a partir de un conjunto de datos simulados generados de las probabilidades a posteriori de la variable clase, calculadas con la red Bayesiana aprendida a partir de un conjunto de datos de entrenamiento. Por último, contribuimos en el campo multiobjetivo en el caso de que algunos de los objetivos no se puedan cuantificar en números reales, sino como funciones en intervalo de valores. Esto ocurre a menudo en aplicaciones de aprendizaje automático, especialmente las basadas en clasificación supervisada. En concreto, se extienden las ideas de dominancia y frontera de Pareto a esta situación. Su aplicación a los estudios de predicción de la rugosidad superficial en el caso de maximizar al mismo tiempo la sensibilidad y la especificidad del clasificador inducido de la red Bayesiana, y no solo maximizar la tasa de clasificación correcta. Los intervalos de estos dos objetivos provienen de un m´etodo de estimación honesta de ambos objetivos, como e.g. validación cruzada en k rodajas o bootstrap.---ABSTRACT---The main objective of this PhD Thesis is to go more deeply into the analysis and design of an intelligent system for surface roughness prediction and control in the end-milling machining process, based fundamentally on Bayesian network classifiers, with the aim of developing a methodology that makes easier the design of this type of systems. The system, whose purpose is to make possible the surface roughness prediction and control, consists of a model learnt from experimental data with the aid of Bayesian networks, that will help to understand the dynamic processes involved in the machining and the interactions among the relevant variables. Since artificial neural networks are models widely used in material cutting proceses, we include also an end-milling model using them, where the geometry and hardness of the piecework are introduced as novel variables not studied so far within this context. Thus, an important contribution in this thesis is these two models for surface roughness prediction, that are then compared with respecto to different aspects: influence of the new variables, performance evaluation metrics, interpretability. One of the main problems with Bayesian classifier-based modelling is the understanding of the enormous posterior probabilitiy tables produced. We introduce an explanation method that generates a set of rules obtained from decision trees. Such trees are induced from a simulated data set generated from the posterior probabilities of the class variable, calculated with the Bayesian network learned from a training data set. Finally, we contribute in the multi-objective field in the case that some of the objectives cannot be quantified as real numbers but as interval-valued functions. This often occurs in machine learning applications, especially those based on supervised classification. Specifically, the dominance and Pareto front ideas are extended to this setting. Its application to the surface roughness prediction studies the case of maximizing simultaneously the sensitivity and specificity of the induced Bayesian network classifier, rather than only maximizing the correct classification rate. Intervals in these two objectives come from a honest estimation method of both objectives, like e.g. k-fold cross-validation or bootstrap.