2 resultados para United States. Commission for the Control of Epilepsy and its Consequences
em Universidad Politécnica de Madrid
Resumo:
La condición física, o como mejor se la conoce hoy en día el “fitness”, es una variable que está cobrando gran protagonismo, especialmente desde la perspectiva de la salud. La mejora de la calidad de vida que se ha experimentado en los últimos años en las sociedades desarrolladas, conlleva un aumento de la esperanza de vida, lo que hace que cada vez más personas vivan más años. Este rápido crecimiento de la población mayor de 60 años hace que, un grupo poblacional prácticamente olvidado desde el punto de vista de la investigación científica en el campo de la actividad física y del deporte, cobre gran relevancia, con el fin de poder ayudar a alcanzar el dicho “no se trata de aportar años a la vida sino vida a lo años”. La presente memoria de Tesis Doctoral tiene como principal objetivo valorar los niveles de fitness en población mayor española, además de analizar la relación existente entre el fitness, sus condicionantes y otros aspectos de la salud, tales como la composición corporal y el estado cognitivo. Entendemos que para poder establecer futuras políticas de salud pública en relación a la actividad física y el envejecimiento activo es necesario conocer cuáles son los niveles de partida de la población mayor en España y sus condicionantes. El trabajo está basado en los datos del estudio multicéntrico EXERNET (Estudio Multi-céntrico para la Evaluación de los Niveles de Condición Física y su relación con Estilos de Vida Saludables en población mayor española no institucionalizada), así como en los datos de dos estudios, llevados a cabo en población mayor institucionalizada. Se han analizado un total de 3136 mayores de vida independiente, procedentes de 6 comunidades autónomas, y 153 mayores institucionalizados en residencias de la Comunidad de Madrid. Los principales resultados de esta tesis son los siguientes: a) Fueron establecidos los valores de referencia, así como las curvas de percentiles, para cada uno de los test de fitness, de acuerdo a la edad y al sexo, en población mayor española de vida independiente y no institucionalizada. b) Los varones obtuvieron mejores niveles de fitness que las mujeres, excepto en los test de flexibilidad; existe una tendencia a disminuir la condición física en ambos sexos a medida que la edad aumenta. c) Niveles bajos de fitness funcional fueron asociados con un aumento en la percepción de problemas. d) El nivel mínimo de fitness funcional a partir del cual los mayores perciben problemas en sus actividades de la vida diaria (AVD) es similar en ambos sexos. e) Niveles elevados de fitness fueron asociados con un menor riesgo de sufrir obesidad sarcopénica y con una mejor salud percibida en los mayores. f) Las personas mayores con obesidad sarcopénica tienen menor capacidad funcional que las personas mayores sanas. g) Niveles elevados de fuerza fueron asociados con un mejor estado cognitivo siendo el estado cognitivo la variable que más influye en el deterioro de la fuerza, incluso más que el sexo y la edad. ABSTRACT Fitness is a variable that is gaining in prominence, especially from the health perspective. Improvement of life quality that has been experienced in the last few years in developed countries, leads to an expanded life expectancy, increasing the numbers of people living longer. This population consisting of people of over 60 years, an almost forgotten population group from the point of view of scientific research in the field of physical activity and sport, is becoming increasingly important, with the main aim of helping to achieve the saying “do not only add years to life, but also add life to years”. The principal aim of the current thesis was to assess physical fitness levels in Spanish elderly people, of over 65 years, analyzing relationship between physical fitness, its determinants, and other aspects of health such as body composition and cognitive status. In order to establish further public health policies in relation to physical activity and active ageing it is necessary to identify the starting physical fitness levels of the Spanish population and their determinants. The work is based on data from the EXERNET multi-center study ("Multi-center Study for the Evaluation of Fitness levels and their relationship to Healthy Lifestyles in noninstitutionalized Spanish elderly"), and on data from two studies conducted in institutionalized elderly people: a total of 3136 non-institutionalized elderly, from 6 Regions of Spain, and 153 institutionalized elderly in nursing homes of Madrid. The main outcomes of this thesis are: a) sex- and age-specific physical fitness normative values and percentile curves for independent and non-institutionalized Spanish elderly were established. b) Greater physical fitness was present in the elderly men than in women, except for the flexibility test, and a trend toward decreased physical fitness in both sexes as their age increased. c) Lower levels of functional fitness were associated with increased perceived problems. d) The minimum functional fitness level at which older adults perceive problems in their ADLs, is similar for both sexes e) Higher levels of physical fitness were associated with a reduced risk of suffering sarcopenic obesity and better perceived health among the elderly. f) The elderly with sarcopenic obesity have lower physical functioning than healthy counterparts. g) Higher strength values were associated with better cognitive status with cognitive status being the most influencing variable in strength deterioration even more than sex and age.
Resumo:
Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.