5 resultados para Unidades de Procesamiento Gráfico (GPU)
em Universidad Politécnica de Madrid
Resumo:
Esta tesis presenta un modelo, una metodología, una arquitectura, varios algoritmos y programas para crear un lexicón de sentimientos unificado (LSU) que cubre cuatro lenguas: inglés, español, portugués y chino. El objetivo principal es alinear, unificar, y expandir el conjunto de lexicones de sentimientos disponibles en Internet y los desarrollados a lo largo de esta investigación. Así, el principal problema a resolver es la tarea de unificar de forma automatizada los diferentes lexicones de sentimientos obtenidos por el crawler CSR, porque la unidad de medida para asignar la intensidad de los valores de la polaridad (de forma manual, semiautomática y automática) varía de acuerdo con las diferentes metodologías utilizadas para la construcción de cada lexicón. La representación codificada de la estructura de datos de los términos presenta también una variación en la estructura de lexicón a lexicón. Por lo que al unificar en un lexicón de sentimientos se hace posible la reutilización del conocimiento recopilado por los diferentes grupos de investigación y se incrementa, a la vez, el alcance, la calidad y la robustez de los lexicones. Nuestra metodología LSU calcula un valor unificado de la intensidad de la polaridad para cada entrada léxica que está presente en al menos dos de los lexicones de sentimientos que forman parte de este estudio. En contraste, las entradas léxicas que no son comunes en al menos dos de los lexicones conservan su valor original. El coeficiente de Pearson resultante permite medir la correlación existente entre las entradas léxicas asignándoles un rango de valores de uno a menos uno, donde uno indica que los valores de los términos están perfectamente correlacionados, cero indica que no existe correlación y menos uno significa que están inversamente correlacionados. Este procedimiento se lleva acabo con la función de MetricasUnificadas tanto en la CPU como en la GPU. Otro problema a resolver es el tiempo de procesamiento que se requiere para realizar la tarea de unificación de la intensidad de la polaridad y con ello alcanzar una cobertura mayor de lemas en los lexicones de sentimientos existentes. Asimismo, la metodología LSU utiliza el procesamiento paralelo para unificar los 155 802 términos. El algoritmo LSU procesa mediante cargas iguales el subconjunto de entradas léxicas en cada uno de los 1344 núcleos en la GPU. Los resultados de nuestro análisis arrojaron un total de 95 430 entradas léxicas donde 35 201 obtuvieron valores positivos, 22 029 negativos y 38 200 neutrales. Finalmente, el tiempo de ejecución fue de 2,506 segundos para el total de las entradas léxicas, lo que permitió reducir el procesamiento de cómputo hasta en una tercera parte con respecto al algoritmo secuencial. De estos resultados se concluye que al lograr un lexicón de sentimientos unificado que permite homogeneizar la intensidad de la polaridad de las unidades léxicas (con valores positivos, negativos y neutrales) deriva no sólo en el análisis semántico del corpus basado en los términos con una mayor carga de polaridad, o del resumen de las valoraciones o las tendencias de neuromarketing, sino también en aplicaciones como el etiquetado subjetivo de sitios web o de portales sintácticos y semánticos, por mencionar algunas. ABSTRACT This thesis presents an approach to create what we have called a Unified Sentiment Lexicon (USL). This approach aims at aligning, unifying, and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. One problem related to the task of the automatic unification of different scores of sentiment lexicons is that there are multiple lexical entries for which the classification of positive, negative, or neutral P, N, Z depends on the unit of measurement used in the annotation methodology of the source sentiment lexicon. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and - 1 , where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and so is the UnifiedMetrics procedure for CPU and GPU, respectively. Another problem is the high processing time required for computing all the lexical entries in the unification task. Thus, the USL approach computes a subset of lexical entries in each of the 1344 GPU cores and uses parallel processing in order to unify 155,802 lexical entries. The results of the analysis conducted using the USL approach show that the USL has 95,430 lexical entries, out of which there are 35,201 considered to be positive, 22,029 negative, and 38,200 neutral. Finally, the runtime was 2.505 seconds for 95,430 lexical entries; this allows a reduction of the time computing for the UnifiedMetrics by 3 times with respect to the sequential implementation. A key contribution of this work is that we preserve the use of a unified sentiment lexicon for all tasks. Such lexicon is used to define resources and resource-related properties that can be verified based on the results of the analysis and is powerful, general and extensible enough to express a large class of interesting properties. Some applications of this work include merging, aligning, pruning and extending the current sentiment lexicons.
Resumo:
Situado en el límite entre Ingeniería, Informática y Biología, la mecánica computacional de las neuronas aparece como un nuevo campo interdisciplinar que potencialmente puede ser capaz de abordar problemas clínicos desde una perspectiva diferente. Este campo es multiescala por naturaleza, yendo desde la nanoescala (como, por ejemplo, los dímeros de tubulina) a la macroescala (como, por ejemplo, el tejido cerebral), y tiene como objetivo abordar problemas que son complejos, y algunas veces imposibles, de estudiar con medios experimentales. La modelización computacional ha sido ampliamente empleada en aplicaciones Neurocientíficas tan diversas como el crecimiento neuronal o la propagación de los potenciales de acción compuestos. Sin embargo, en la mayoría de los enfoques de modelización hechos hasta ahora, la interacción entre la célula y el medio/estímulo que la rodea ha sido muy poco explorada. A pesar de la tremenda importancia de esa relación en algunos desafíos médicos—como, por ejemplo, lesiones traumáticas en el cerebro, cáncer, la enfermedad del Alzheimer—un puente que relacione las propiedades electrofisiológicas-químicas y mecánicas desde la escala molecular al nivel celular todavía no existe. Con ese objetivo, esta investigación propone un marco computacional multiescala particularizado para dos escenarios respresentativos: el crecimiento del axón y el acomplamiento electrofisiológicomecánico de las neuritas. En el primer caso, se explora la relación entre los constituyentes moleculares del axón durante su crecimiento y sus propiedades mecánicas resultantes, mientras que en el último, un estímulo mecánico provoca deficiencias funcionales a nivel celular como consecuencia de sus alteraciones electrofisiológicas-químicas. La modelización computacional empleada en este trabajo es el método de las diferencias finitas, y es implementada en un nuevo programa llamado Neurite. Aunque el método de los elementos finitos es también explorado en parte de esta investigación, el método de las diferencias finitas tiene la flexibilidad y versatilidad necesaria para implementar mode los biológicos, así como la simplicidad matemática para extenderlos a simulaciones a gran escala con un coste computacional bajo. Centrándose primero en el efecto de las propiedades electrofisiológicas-químicas sobre las propiedades mecánicas, una versión adaptada de Neurite es desarrollada para simular la polimerización de los microtúbulos en el crecimiento del axón y proporcionar las propiedades mecánicas como función de la ocupación de los microtúbulos. Después de calibrar el modelo de crecimiento del axón frente a resultados experimentales disponibles en la literatura, las características mecánicas pueden ser evaluadas durante la simulación. Las propiedades mecánicas del axón muestran variaciones dramáticas en la punta de éste, donde el cono de crecimiento soporta las señales químicas y mecánicas. Bansándose en el conocimiento ganado con el modelo de diferencias finitas, y con el objetivo de ir de 1D a 3D, este esquema preliminar pero de una naturaleza innovadora allana el camino a futuros estudios con el método de los elementos finitos. Centrándose finalmente en el efecto de las propiedades mecánicas sobre las propiedades electrofisiológicas- químicas, Neurite es empleado para relacionar las cargas mecánicas macroscópicas con las deformaciones y velocidades de deformación a escala microscópica, y simular la propagación de la señal eléctrica en las neuritas bajo carga mecánica. Las simulaciones fueron calibradas con resultados experimentales publicados en la literatura, proporcionando, por tanto, un modelo capaz de predecir las alteraciones de las funciones electrofisiológicas neuronales bajo cargas externas dañinas, y uniendo lesiones mecánicas con las correspondientes deficiencias funcionales. Para abordar simulaciones a gran escala, aunque otras arquitecturas avanzadas basadas en muchos núcleos integrados (MICs) fueron consideradas, los solvers explícito e implícito se implementaron en unidades de procesamiento central (CPU) y unidades de procesamiento gráfico (GPUs). Estudios de escalabilidad fueron llevados acabo para ambas implementaciones mostrando resultados prometedores para casos de simulaciones extremadamente grandes con GPUs. Esta tesis abre la vía para futuros modelos mecánicos con el objetivo de unir las propiedades electrofisiológicas-químicas con las propiedades mecánicas. El objetivo general es mejorar el conocimiento de las comunidades médicas y de bioingeniería sobre la mecánica de las neuronas y las deficiencias funcionales que aparecen de los daños producidos por traumatismos mecánicos, como lesiones traumáticas en el cerebro, o enfermedades neurodegenerativas como la enfermedad del Alzheimer. ABSTRACT Sitting at the interface between Engineering, Computer Science and Biology, Computational Neuron Mechanics appears as a new interdisciplinary field potentially able to tackle clinical problems from a new perspective. This field is multiscale by nature, ranging from the nanoscale (e.g., tubulin dimers) to the macroscale (e.g., brain tissue), and aims at tackling problems that are complex, and sometime impossible, to study through experimental means. Computational modeling has been widely used in different Neuroscience applications as diverse as neuronal growth or compound action potential propagation. However, in the majority of the modeling approaches done in this field to date, the interactions between the cell and its surrounding media/stimulus have been rarely explored. Despite of the tremendous importance of such relationship in several medical challenges—e.g., traumatic brain injury (TBI), cancer, Alzheimer’s disease (AD)—a bridge between electrophysiological-chemical and mechanical properties of neurons from the molecular scale to the cell level is still lacking. To this end, this research proposes a multiscale computational framework particularized for two representative scenarios: axon growth and electrophysiological-mechanical coupling of neurites. In the former case, the relation between the molecular constituents of the axon during its growth and its resulting mechanical properties is explored, whereas in the latter, a mechanical stimulus provokes functional deficits at cell level as a consequence of its electrophysiological-chemical alterations. The computational modeling approach chosen in this work is the finite difference method (FDM), and was implemented in a new program called Neurite. Although the finite element method (FEM) is also explored as part of this research, the FDM provides the necessary flexibility and versatility to implement biological models, as well as the mathematical simplicity to extend them to large scale simulations with a low computational cost. Focusing first on the effect of electrophysiological-chemical properties on the mechanical proper ties, an adaptation of Neurite was developed to simulate microtubule polymerization in axonal growth and provide the axon mechanical properties as a function of microtubule occupancy. After calibrating the axon growth model against experimental results available in the literature, the mechanical characteristics can be tracked during the simulation. The axon mechanical properties show dramatic variations at the tip of the axon, where the growth cone supports the chemical and mechanical signaling. Based on the knowledge gained from the FDM scheme, and in order to go from 1D to 3D, this preliminary yet novel scheme paves the road for future studies with FEM. Focusing then on the effect of mechanical properties on the electrophysiological-chemical properties, Neurite was used to relate macroscopic mechanical loading to microscopic strains and strain rates, and simulate the electrical signal propagation along neurites under mechanical loading. The simulations were calibrated against experimental results published in the literature, thus providing a model able to predict the alteration of neuronal electrophysiological function under external damaging load, and linking mechanical injuries to subsequent acute functional deficits. To undertake large scale simulations, although other state-of-the-art architectures based on many integrated cores (MICs) were considered, the explicit and implicit solvers were implemented for central processing units (CPUs) and graphics processing units (GPUs). Scalability studies were done for both implementations showing promising results for extremely large scale simulations with GPUs. This thesis opens the avenue for future mechanical modeling approaches aimed at linking electrophysiological- chemical properties to mechanical properties. Its overarching goal is to enhance the bioengineering and medical communities knowledge on neuronal mechanics and functional deficits arising from damages produced by direct mechanical insults, such as TBI, or neurodegenerative evolving illness, such as AD.
Resumo:
En la última década, los sistemas de telecomunicación de alta frecuencia han evolucionado tremendamente. Las bandas de frecuencias, los anchos de banda del usuario, las técnicas de modulación y otras características eléctricas están en constante cambio de acuerdo a la evolución de la tecnología y la aparición de nuevas aplicaciones. Las arquitecturas de los transceptores modernos son diferentes de las tradicionales. Muchas de las funciones convencionalmente realizadas por circuitos analógicos han sido asignadas gradualmente a procesadores digitales de señal, de esta manera, las fronteras entre la banda base y las funcionalidades de RF se difuminan. Además, los transceptores inalámbricos digitales modernos son capaces de soportar protocolos de datos de alta velocidad, por lo que emplean una elevada escala de integración para muchos de los subsistemas que componen las diferentes etapas. Uno de los objetivos de este trabajo de investigación es realizar un estudio de las nuevas configuraciones en el desarrollo de demostradores de radiofrecuencia (un receptor y un transmisor) y transpondedores para fines de comunicaciones y militares, respectivamente. Algunos trabajos se han llevado a cabo en el marco del proyecto TECRAIL, donde se ha implementado un demostrador de la capa física LTE para evaluar la viabilidad del estándar LTE en el entorno ferroviario. En el ámbito militar y asociado al proyecto de calibración de radares (CALRADAR), se ha efectuado una actividad importante en el campo de la calibración de radares balísticos Doppler donde se ha analizado cuidadosamente su precisión y se ha desarrollado la unidad generadora de Doppler de un patrón electrónico para la calibración de estos radares. Dicha unidad Doppler es la responsable de la elevada resolución en frecuencia del generador de “blancos” radar construido. Por otro lado, se ha elaborado un análisis completo de las incertidumbres del sistema para optimizar el proceso de calibración. En una segunda fase se han propuesto soluciones en el desarrollo de dispositivos electro-ópticos para aplicaciones de comunicaciones. Estos dispositivos son considerados, debido a sus ventajas, tecnologías de soporte para futuros dispositivos y subsistemas de RF/microondas. Algunas demandas de radio definida por software podrían cubrirse aplicando nuevos conceptos de circuitos sintonizables mediante parámetros programables de un modo dinámico. También se ha realizado una contribución relacionada con el diseño de filtros paso banda con topología “Hairpin”, los cuales son compactos y se pueden integrar fácilmente en circuitos de microondas en una amplia gama de aplicaciones destinadas a las comunicaciones y a los sistemas militares. Como importante aportación final, se ha presentado una propuesta para ecualizar y mejorar las transmisiones de señales discretas de temporización entre los TRMs y otras unidades de procesamiento, en el satélite de última generación SEOSAR/PAZ. Tras un análisis exhaustivo, se ha obtenido la configuración óptima de los buses de transmisión de datos de alta velocidad basadas en una red de transceptores. ABSTRACT In the last decade, high-frequency telecommunications systems have extremely evolved. Frequency bands, user bandwidths, modulation techniques and other electrical characteristics of these systems are constantly changing following to the evolution of technology and the emergence of new applications. The architectures of modern transceivers are different from the traditional ones. Many of the functions conventionally performed by analog circuitry have gradually been assigned to digital signal processors. In this way, boundaries between baseband and RF functionalities are diffused. The design of modern digital wireless transceivers are capable of supporting high-speed data protocols. Therefore, a high integration scale is required for many of the components in the block chain. One of the goals of this research work is to investigate new configurations in the development of RF demonstrators (a receiver and a transmitter) and transponders for communications and military purposes, respectively. A LTE physical layer demonstrator has been implemented to assess the viability of LTE in railway scenario under the framework of the TECRAIL project. An important activity, related to the CALRADAR project, for the calibration of Doppler radars with extremely high precision has been performed. The contribution is the Doppler unit of the radar target generator developed that reveals a high frequency resolution. In order to assure the accuracy of radar calibration process, a complete analysis of the uncertainty in the above mentioned procedure has been carried out. Another important research topic has been the development of photonic devices that are considered enabling technologies for future RF and microwave devices and subsystems. Some Software Defined Radio demands are addressed by the proposed novel circuit concepts based on photonically tunable elements with dynamically programmable parameters. A small contribution has been made in the field of Hairpin-line bandpass filters. These filters are compact and can also be easily integrated into microwave circuits finding a wide range of applications in communication and military systems. In this research field, the contributions made have been the improvements in the design and the simulations of wideband filters. Finally, an important proposal to balance and enhance transmissions of discrete timing signals between TRMs and other processing units into the state of the art SEOSAR/PAZ Satellite has been carried out obtaining the optimal configuration of the high-speed data transmission buses based on a transceiver network. RÉSUMÉ Les systèmes d'hyperfréquence dédiés aux télécommunications ont beaucoup évolué dans la dernière décennie. Les bandes de fréquences, les bandes passantes par utilisateur, les techniques de modulation et d'autres caractéristiques électriques sont en constant changement en fonction de l'évolution des technologies et l'émergence de nouvelles applications. Les architectures modernes des transcepteurs sont différentes des traditionnelles. Un grand nombre d’opérations normalement effectuées par les circuits analogiques a été progressivement alloué à des processeurs de signaux numériques. Ainsi, les frontières entre la bande de base et la fonctionnalité RF sont floues. Les transcepteurs sans fils numériques modernes sont capables de transférer des données à haute vitesse selon les différents protocoles de communication utilisés. C'est pour cette raison qu’un niveau élevé d'intégration est nécessaire pour un grand nombre de composants qui constitue les différentes étapes des systèmes. L'un des objectifs de cette recherche est d'étudier les nouvelles configurations dans le développement des démonstrateurs RF (récepteur et émetteur) et des transpondeurs à des fins militaire et de communication. Certains travaux ont été réalisés dans le cadre du projet TECRAIL, où un démonstrateur de la couche physique LTE a été mis en place pour évaluer la faisabilité de la norme LTE dans l'environnement ferroviaire. Une contribution importante, liée au projet CALRADAR, est proposée dans le domaine des systèmes d’étalonnage de radar Doppler de haute précision. Cette contribution est le module Doppler de génération d’hyperfréquence intégré dans le système électronique de génération de cibles radar virtuelles que présente une résolution de fréquence très élevée. Une analyse complète de l'incertitude dans l'étalonnage des radars Doppler a été effectuée, afin d'assurer la précision du calibrage. La conception et la mise en oeuvre de quelques dispositifs photoniques sont un autre sujet important du travail de recherche présenté dans cette thèse. De tels dispositifs sont considérés comme étant des technologies habilitantes clés pour les futurs dispositifs et sous-systèmes RF et micro-ondes grâce à leurs avantages. Certaines demandes de radio définies par logiciel pourraient être supportées par nouveaux concepts de circuits basés sur des éléments dynamiquement programmables en utilisant des paramètres ajustables. Une petite contribution a été apportée pour améliorer la conception et les simulations des filtres passe-bande Hairpin à large bande. Ces filtres sont compacts et peuvent également être intégrés dans des circuits à micro-ondes compatibles avec un large éventail d'applications dans les systèmes militaires et de communication. Finalement, une proposition a été effectuée visant à équilibrer et améliorer la transmission des signaux discrets de synchronisation entre les TRMs et d'autres unités de traitement dans le satellite SEOSAR/PAZ de dernière génération et permettant l’obtention de la configuration optimale des bus de transmission de données à grande vitesse basés sur un réseau de transcepteurs.
Resumo:
En el mundo actual las aplicaciones basadas en sistemas biométricos, es decir, aquellas que miden las señales eléctricas de nuestro organismo, están creciendo a un gran ritmo. Todos estos sistemas incorporan sensores biomédicos, que ayudan a los usuarios a controlar mejor diferentes aspectos de la rutina diaria, como podría ser llevar un seguimiento detallado de una rutina deportiva, o de la calidad de los alimentos que ingerimos. Entre estos sistemas biométricos, los que se basan en la interpretación de las señales cerebrales, mediante ensayos de electroencefalografía o EEG están cogiendo cada vez más fuerza para el futuro, aunque están todavía en una situación bastante incipiente, debido a la elevada complejidad del cerebro humano, muy desconocido para los científicos hasta el siglo XXI. Por estas razones, los dispositivos que utilizan la interfaz cerebro-máquina, también conocida como BCI (Brain Computer Interface), están cogiendo cada vez más popularidad. El funcionamiento de un sistema BCI consiste en la captación de las ondas cerebrales de un sujeto para después procesarlas e intentar obtener una representación de una acción o de un pensamiento del individuo. Estos pensamientos, correctamente interpretados, son posteriormente usados para llevar a cabo una acción. Ejemplos de aplicación de sistemas BCI podrían ser mover el motor de una silla de ruedas eléctrica cuando el sujeto realice, por ejemplo, la acción de cerrar un puño, o abrir la cerradura de tu propia casa usando un patrón cerebral propio. Los sistemas de procesamiento de datos están evolucionando muy rápido con el paso del tiempo. Los principales motivos son la alta velocidad de procesamiento y el bajo consumo energético de las FPGAs (Field Programmable Gate Array). Además, las FPGAs cuentan con una arquitectura reconfigurable, lo que las hace más versátiles y potentes que otras unidades de procesamiento como las CPUs o las GPUs.En el CEI (Centro de Electrónica Industrial), donde se lleva a cabo este TFG, se dispone de experiencia en el diseño de sistemas reconfigurables en FPGAs. Este TFG es el segundo de una línea de proyectos en la cual se busca obtener un sistema capaz de procesar correctamente señales cerebrales, para llegar a un patrón común que nos permita actuar en consecuencia. Más concretamente, se busca detectar cuando una persona está quedándose dormida a través de la captación de unas ondas cerebrales, conocidas como ondas alfa, cuya frecuencia está acotada entre los 8 y los 13 Hz. Estas ondas, que aparecen cuando cerramos los ojos y dejamos la mente en blanco, representan un estado de relajación mental. Por tanto, este proyecto comienza como inicio de un sistema global de BCI, el cual servirá como primera toma de contacto con el procesamiento de las ondas cerebrales, para el posterior uso de hardware reconfigurable sobre el cual se implementarán los algoritmos evolutivos. Por ello se vuelve necesario desarrollar un sistema de procesamiento de datos en una FPGA. Estos datos se procesan siguiendo la metodología de procesamiento digital de señales, y en este caso se realiza un análisis de la frecuencia utilizando la transformada rápida de Fourier, o FFT. Una vez desarrollado el sistema de procesamiento de los datos, se integra con otro sistema que se encarga de captar los datos recogidos por un ADC (Analog to Digital Converter), conocido como ADS1299. Este ADC está especialmente diseñado para captar potenciales del cerebro humano. De esta forma, el sistema final capta los datos mediante el ADS1299, y los envía a la FPGA que se encarga de procesarlos. La interpretación es realizada por los usuarios que analizan posteriormente los datos procesados. Para el desarrollo del sistema de procesamiento de los datos, se dispone primariamente de dos plataformas de estudio, a partir de las cuales se captarán los datos para después realizar el procesamiento: 1. La primera consiste en una herramienta comercial desarrollada y distribuida por OpenBCI, proyecto que se dedica a la venta de hardware para la realización de EEG, así como otros ensayos. Esta herramienta está formada por un microprocesador, un módulo de memoria SD para el almacenamiento de datos, y un módulo de comunicación inalámbrica que transmite los datos por Bluetooth. Además cuenta con el mencionado ADC ADS1299. Esta plataforma ofrece una interfaz gráfica que sirve para realizar la investigación previa al diseño del sistema de procesamiento, al permitir tener una primera toma de contacto con el sistema. 2. La segunda plataforma consiste en un kit de evaluación para el ADS1299, desde la cual se pueden acceder a los diferentes puertos de control a través de los pines de comunicación del ADC. Esta plataforma se conectará con la FPGA en el sistema integrado. Para entender cómo funcionan las ondas más simples del cerebro, así como saber cuáles son los requisitos mínimos en el análisis de ondas EEG se realizaron diferentes consultas con el Dr Ceferino Maestu, neurofisiólogo del Centro de Tecnología Biomédica (CTB) de la UPM. Él se encargó de introducirnos en los distintos procedimientos en el análisis de ondas en electroencefalogramas, así como la forma en que se deben de colocar los electrodos en el cráneo. Para terminar con la investigación previa, se realiza en MATLAB un primer modelo de procesamiento de los datos. Una característica muy importante de las ondas cerebrales es la aleatoriedad de las mismas, de forma que el análisis en el dominio del tiempo se vuelve muy complejo. Por ello, el paso más importante en el procesamiento de los datos es el paso del dominio temporal al dominio de la frecuencia, mediante la aplicación de la transformada rápida de Fourier o FFT (Fast Fourier Transform), donde se pueden analizar con mayor precisión los datos recogidos. El modelo desarrollado en MATLAB se utiliza para obtener los primeros resultados del sistema de procesamiento, el cual sigue los siguientes pasos. 1. Se captan los datos desde los electrodos y se escriben en una tabla de datos. 2. Se leen los datos de la tabla. 3. Se elige el tamaño temporal de la muestra a procesar. 4. Se aplica una ventana para evitar las discontinuidades al principio y al final del bloque analizado. 5. Se completa la muestra a convertir con con zero-padding en el dominio del tiempo. 6. Se aplica la FFT al bloque analizado con ventana y zero-padding. 7. Los resultados se llevan a una gráfica para ser analizados. Llegados a este punto, se observa que la captación de ondas alfas resulta muy viable. Aunque es cierto que se presentan ciertos problemas a la hora de interpretar los datos debido a la baja resolución temporal de la plataforma de OpenBCI, este es un problema que se soluciona en el modelo desarrollado, al permitir el kit de evaluación (sistema de captación de datos) actuar sobre la velocidad de captación de los datos, es decir la frecuencia de muestreo, lo que afectará directamente a esta precisión. Una vez llevado a cabo el primer procesamiento y su posterior análisis de los resultados obtenidos, se procede a realizar un modelo en Hardware que siga los mismos pasos que el desarrollado en MATLAB, en la medida que esto sea útil y viable. Para ello se utiliza el programa XPS (Xilinx Platform Studio) contenido en la herramienta EDK (Embedded Development Kit), que nos permite diseñar un sistema embebido. Este sistema cuenta con: Un microprocesador de tipo soft-core llamado MicroBlaze, que se encarga de gestionar y controlar todo el sistema; Un bloque FFT que se encarga de realizar la transformada rápida Fourier; Cuatro bloques de memoria BRAM, donde se almacenan los datos de entrada y salida del bloque FFT y un multiplicador para aplicar la ventana a los datos de entrada al bloque FFT; Un bus PLB, que consiste en un bus de control que se encarga de comunicar el MicroBlaze con los diferentes elementos del sistema. Tras el diseño Hardware se procede al diseño Software utilizando la herramienta SDK(Software Development Kit).También en esta etapa se integra el sistema de captación de datos, el cual se controla mayoritariamente desde el MicroBlaze. Por tanto, desde este entorno se programa el MicroBlaze para gestionar el Hardware que se ha generado. A través del Software se gestiona la comunicación entre ambos sistemas, el de captación y el de procesamiento de los datos. También se realiza la carga de los datos de la ventana a aplicar en la memoria correspondiente. En las primeras etapas de desarrollo del sistema, se comienza con el testeo del bloque FFT, para poder comprobar el funcionamiento del mismo en Hardware. Para este primer ensayo, se carga en la BRAM los datos de entrada al bloque FFT y en otra BRAM los datos de la ventana aplicada. Los datos procesados saldrán a dos BRAM, una para almacenar los valores reales de la transformada y otra para los imaginarios. Tras comprobar el correcto funcionamiento del bloque FFT, se integra junto al sistema de adquisición de datos. Posteriormente se procede a realizar un ensayo de EEG real, para captar ondas alfa. Por otro lado, y para validar el uso de las FPGAs como unidades ideales de procesamiento, se realiza una medición del tiempo que tarda el bloque FFT en realizar la transformada. Este tiempo se compara con el tiempo que tarda MATLAB en realizar la misma transformada a los mismos datos. Esto significa que el sistema desarrollado en Hardware realiza la transformada rápida de Fourier 27 veces más rápido que lo que tarda MATLAB, por lo que se puede ver aquí la gran ventaja competitiva del Hardware en lo que a tiempos de ejecución se refiere. En lo que al aspecto didáctico se refiere, este TFG engloba diferentes campos. En el campo de la electrónica: Se han mejorado los conocimientos en MATLAB, así como diferentes herramientas que ofrece como FDATool (Filter Design Analysis Tool). Se han adquirido conocimientos de técnicas de procesado de señal, y en particular, de análisis espectral. Se han mejorado los conocimientos en VHDL, así como su uso en el entorno ISE de Xilinx. Se han reforzado los conocimientos en C mediante la programación del MicroBlaze para el control del sistema. Se ha aprendido a crear sistemas embebidos usando el entorno de desarrollo de Xilinx usando la herramienta EDK (Embedded Development Kit). En el campo de la neurología, se ha aprendido a realizar ensayos EEG, así como a analizar e interpretar los resultados mostrados en el mismo. En cuanto al impacto social, los sistemas BCI afectan a muchos sectores, donde destaca el volumen de personas con discapacidades físicas, para los cuales, este sistema implica una oportunidad de aumentar su autonomía en el día a día. También otro sector importante es el sector de la investigación médica, donde los sistemas BCIs son aplicables en muchas aplicaciones como, por ejemplo, la detección y estudio de enfermedades cognitivas.
Resumo:
Debido al creciente aumento del tamaño de los datos en muchos de los actuales sistemas de información, muchos de los algoritmos de recorrido de estas estructuras pierden rendimento para realizar búsquedas en estos. Debido a que la representacion de estos datos en muchos casos se realiza mediante estructuras nodo-vertice (Grafos), en el año 2009 se creó el reto Graph500. Con anterioridad, otros retos como Top500 servían para medir el rendimiento en base a la capacidad de cálculo de los sistemas, mediante tests LINPACK. En caso de Graph500 la medicion se realiza mediante la ejecución de un algoritmo de recorrido en anchura de grafos (BFS en inglés) aplicada a Grafos. El algoritmo BFS es uno de los pilares de otros muchos algoritmos utilizados en grafos como SSSP, shortest path o Betweeness centrality. Una mejora en este ayudaría a la mejora de los otros que lo utilizan. Analisis del Problema El algoritmos BFS utilizado en los sistemas de computación de alto rendimiento (HPC en ingles) es usualmente una version para sistemas distribuidos del algoritmo secuencial original. En esta versión distribuida se inicia la ejecución realizando un particionado del grafo y posteriormente cada uno de los procesadores distribuidos computará una parte y distribuirá sus resultados a los demás sistemas. Debido a que la diferencia de velocidad entre el procesamiento en cada uno de estos nodos y la transfencia de datos por la red de interconexión es muy alta (estando en desventaja la red de interconexion) han sido bastantes las aproximaciones tomadas para reducir la perdida de rendimiento al realizar transferencias. Respecto al particionado inicial del grafo, el enfoque tradicional (llamado 1D-partitioned graph en ingles) consiste en asignar a cada nodo unos vertices fijos que él procesará. Para disminuir el tráfico de datos se propuso otro particionado (2D) en el cual la distribución se haciá en base a las aristas del grafo, en vez de a los vertices. Este particionado reducía el trafico en la red en una proporcion O(NxM) a O(log(N)). Si bien han habido otros enfoques para reducir la transferecnia como: reordemaniento inicial de los vertices para añadir localidad en los nodos, o particionados dinámicos, el enfoque que se va a proponer en este trabajo va a consistir en aplicar técnicas recientes de compression de grandes sistemas de datos como Bases de datos de alto volume o motores de búsqueda en internet para comprimir los datos de las transferencias entre nodos.---ABSTRACT---The Breadth First Search (BFS) algorithm is the foundation and building block of many higher graph-based operations such as spanning trees, shortest paths and betweenness centrality. The importance of this algorithm increases each day due to it is a key requirement for many data structures which are becoming popular nowadays. These data structures turn out to be internally graph structures. When the BFS algorithm is parallelized and the data is distributed into several processors, some research shows a performance limitation introduced by the interconnection network [31]. Hence, improvements on the area of communications may benefit the global performance in this key algorithm. In this work it is presented an alternative compression mechanism. It differs with current existing methods in that it is aware of characteristics of the data which may benefit the compression. Apart from this, we will perform a other test to see how this algorithm (in a dis- tributed scenario) benefits from traditional instruction-based optimizations. Last, we will review the current supercomputing techniques and the related work being done in the area.