5 resultados para Understandability

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge resource reuse has become a popular approach within the ontology engineering field, mainly because it can speed up the ontology development process, saving time and money and promoting the application of good practices. The NeOn Methodology provides guidelines for reuse. These guidelines include the selection of the most appropriate knowledge resources for reuse in ontology development. This is a complex decision-making problem where different conflicting objectives, like the reuse cost, understandability, integration workload and reliability, have to be taken into account simultaneously. GMAA is a PC-based decision support system based on an additive multi-attribute utility model that is intended to allay the operational difficulties involved in the Decision Analysis methodology. The paper illustrates how it can be applied to select multimedia ontologies for reuse to develop a new ontology in the multimedia domain. It also demonstrates that the sensitivity analyses provided by GMAA are useful tools for making a final recommendation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While workflow technology has gained momentum in the last decade as a means for specifying and enacting computational experiments in modern science, reusing and repurposing existing workflows to build new scientific experiments is still a daunting task. This is partly due to the difficulty that scientists experience when attempting to understand existing workflows, which contain several data preparation and adaptation steps in addition to the scientifically significant analysis steps. One way to tackle the understandability problem is through providing abstractions that give a high-level view of activities undertaken within workflows. As a first step towards abstractions, we report in this paper on the results of a manual analysis performed over a set of real-world scientific workflows from Taverna and Wings systems. Our analysis has resulted in a set of scientific workflow motifs that outline i) the kinds of data intensive activities that are observed in workflows (data oriented motifs), and ii) the different manners in which activities are implemented within workflows (workflow oriented motifs). These motifs can be useful to inform workflow designers on the good and bad practices for workflow development, to inform the design of automated tools for the generation of workflow abstractions, etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge resource reuse has become a popular approach within the ontology engineering field, mainly because it can speed up the ontology development process, saving time and money and promoting the application of good practices. The NeOn Methodology provides guidelines for reuse. These guidelines include the selection of the most appropriate knowledge resources for reuse in ontology development. This is a complex decision-making problem where different conflicting objectives, like the reuse cost, understandability, integration workload and reliability, have to be taken into account simultaneously. GMAA is a PC-based decision support system based on an additive multi-attribute utility model that is intended to allay the operational difficulties involved in the Decision Analysis methodology. The paper illustrates how it can be applied to select multimedia ontologies for reuse to develop a new ontology in the multimedia domain. It also demonstrates that the sensitivity analyses provided by GMAA are useful tools for making a final recommendation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las compañías de desarrollo de software buscan reducir costes a través del desarrollo de diseños que permitan: a) facilidad en la distribución del trabajo de desarrollo, con la menor comunicación de las partes; b) modificabilidad, permitiendo realizar cambios sobre un módulo sin alterar las otras partes y; c) comprensibilidad, permitiendo estudiar un módulo del sistema a la vez. Estas características elementales en el diseño de software se logran a través del diseño de sistemas cuasi-descomponibles, cuyo modelo teórico fue introducido por Simon en su búsqueda de una teoría general de los sistemas. En el campo del diseño de software, Parnas propone un camino práctico para lograr sistemas cuasi-descomponibles llamado el Principio de Ocultación de Información. El Principio de Ocultación de Información es un criterio diferente de descomposición en módulos, cuya implementación logra las características deseables de un diseño eficiente a nivel del proceso de desarrollo y mantenimiento. El Principio y el enfoque orientado a objetos se relacionan debido a que el enfoque orientado a objetos facilita la implementación del Principio, es por esto que cuando los objetos empiezan a tomar fuerza, también aparecen paralelamente las dificultades en el aprendizaje de diseño de software orientado a objetos, las cuales se mantienen hasta la actualidad, tal como se reporta en la literatura. Las dificultades en el aprendizaje de diseño de software orientado a objetos tiene un gran impacto tanto en las aulas como en la profesión. La detección de estas dificultades permitirá a los docentes corregirlas o encaminarlas antes que éstas se trasladen a la industria. Por otro lado, la industria puede estar advertida de los potenciales problemas en el proceso de desarrollo de software. Esta tesis tiene como objetivo investigar sobre las dificultades en el diseño de software orientado a objetos, a través de un estudio empírico. El estudio fue realizado a través de un estudio de caso cualitativo, que estuvo conformado por tres partes. La primera, un estudio inicial que tuvo como objetivo conocer el entendimiento de los estudiantes alrededor del Principio de Ocultación de Información antes de que iniciasen la instrucción. La segunda parte, un estudio llevado a cabo a lo largo del período de instrucción con la finalidad de obtener las dificultades de diseño de software y su nivel de persistencia. Finalmente, una tercera parte, cuya finalidad fue el estudio de las dificultades esenciales de aprendizaje y sus posibles orígenes. Los participantes de este estudio pertenecieron a la materia de Software Design del European Master in Software Engineering de la Escuela Técnica Superior de Ingenieros Informáticos de la Universidad Politécnica de Madrid. Los datos cualitativos usados para el análisis procedieron de las observaciones en las horas de clase y exposiciones, entrevistas realizadas a los estudiantes y ejercicios enviados a lo largo del período de instrucción. Las dificultades presentadas en esta tesis en sus diferentes perspectivas, aportaron conocimiento concreto de un estudio de caso en particular, realizando contribuciones relevantes en el área de diseño de software, docencia, industria y a nivel metodológico. ABSTRACT The software development companies look to reduce costs through the development of designs that will: a) ease the distribution of development work with the least communication between the parties; b) changeability, allowing to change a module without disturbing the other parties and; c) understandability, allowing to study a system module at a time. These basic software design features are achieved through the design of quasidecomposable systems, whose theoretical model was introduced by Simon in his search for a general theory of systems. In the field of software design, Parnas offers a practical way to achieve quasi-decomposable systems, called The Information Hiding Principle. The Information Hiding Principle is different criterion for decomposition into modules, whose implementation achieves the desirable characteristics of an efficient design at the development and maintenance level. The Principle and the object-oriented approach are related because the object-oriented approach facilitates the implementation of The Principle, which is why when objects begin to take hold, also appear alongside the difficulties in learning an object-oriented software design, which remain to this day, as reported in the literature. Difficulties in learning object-oriented software design has a great impact both in the classroom and in the profession. The detection of these difficulties will allow teachers to correct or route them before they move to the industry. On the other hand, the industry can be warned of potential problems related to the software development process. This thesis aims to investigate the difficulties in learning the object-oriented design, through an empirical study. The study was conducted through a qualitative case study, which consisted of three parts. The first, an initial study was aimed to understand the knowledge of the students around The Information Hiding Principle before they start the instruction. The second part, a study was conducted during the entire period of instruction in order to obtain the difficulties of software design and their level of persistence. Finally, a third party, whose purpose was to study the essential difficulties of learning and their possible sources. Participants in this study belonged to the field of Software Design of the European Master in Software Engineering at the Escuela Técnica Superior de Ingenieros Informáticos of Universidad Politécnica de Madrid. The qualitative data used for the analysis came from the observations in class time and exhibitions, performed interviews with students and exercises sent over the period of instruction. The difficulties presented in this thesis, in their different perspectives, provided concrete knowledge of a particular case study, making significant contributions in the area of software design, teaching, industry and methodological level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La gran cantidad de datos que se registran diariamente en los sistemas de base de datos de las organizaciones ha generado la necesidad de analizarla. Sin embargo, se enfrentan a la complejidad de procesar enormes volúmenes de datos a través de métodos tradicionales de análisis. Además, dentro de un contexto globalizado y competitivo las organizaciones se mantienen en la búsqueda constante de mejorar sus procesos, para lo cual requieren herramientas que les permitan tomar mejores decisiones. Esto implica estar mejor informado y conocer su historia digital para describir sus procesos y poder anticipar (predecir) eventos no previstos. Estos nuevos requerimientos de análisis de datos ha motivado el desarrollo creciente de proyectos de minería de datos. El proceso de minería de datos busca obtener desde un conjunto masivo de datos, modelos que permitan describir los datos o predecir nuevas instancias en el conjunto. Implica etapas de: preparación de los datos, procesamiento parcial o totalmente automatizado para identificar modelos en los datos, para luego obtener como salida patrones, relaciones o reglas. Esta salida debe significar un nuevo conocimiento para la organización, útil y comprensible para los usuarios finales, y que pueda ser integrado a los procesos para apoyar la toma de decisiones. Sin embargo, la mayor dificultad es justamente lograr que el analista de datos, que interviene en todo este proceso, pueda identificar modelos lo cual es una tarea compleja y muchas veces requiere de la experiencia, no sólo del analista de datos, sino que también del experto en el dominio del problema. Una forma de apoyar el análisis de datos, modelos y patrones es a través de su representación visual, utilizando las capacidades de percepción visual del ser humano, la cual puede detectar patrones con mayor facilidad. Bajo este enfoque, la visualización ha sido utilizada en minería datos, mayormente en el análisis descriptivo de los datos (entrada) y en la presentación de los patrones (salida), dejando limitado este paradigma para el análisis de modelos. El presente documento describe el desarrollo de la Tesis Doctoral denominada “Nuevos Esquemas de Visualizaciones para Mejorar la Comprensibilidad de Modelos de Data Mining”. Esta investigación busca aportar con un enfoque de visualización para apoyar la comprensión de modelos minería de datos, para esto propone la metáfora de modelos visualmente aumentados. ABSTRACT The large amount of data to be recorded daily in the systems database of organizations has generated the need to analyze it. However, faced with the complexity of processing huge volumes of data over traditional methods of analysis. Moreover, in a globalized and competitive environment organizations are kept constantly looking to improve their processes, which require tools that allow them to make better decisions. This involves being bettered informed and knows your digital story to describe its processes and to anticipate (predict) unanticipated events. These new requirements of data analysis, has led to the increasing development of data-mining projects. The data-mining process seeks to obtain from a massive data set, models to describe the data or predict new instances in the set. It involves steps of data preparation, partially or fully automated processing to identify patterns in the data, and then get output patterns, relationships or rules. This output must mean new knowledge for the organization, useful and understandable for end users, and can be integrated into the process to support decision-making. However, the biggest challenge is just getting the data analyst involved in this process, which can identify models is complex and often requires experience not only of the data analyst, but also the expert in the problem domain. One way to support the analysis of the data, models and patterns, is through its visual representation, i.e., using the capabilities of human visual perception, which can detect patterns easily in any context. Under this approach, the visualization has been used in data mining, mostly in exploratory data analysis (input) and the presentation of the patterns (output), leaving limited this paradigm for analyzing models. This document describes the development of the doctoral thesis entitled "New Visualizations Schemes to Improve Understandability of Data-Mining Models". This research aims to provide a visualization approach to support understanding of data mining models for this proposed metaphor visually enhanced models.