53 resultados para Underground
em Universidad Politécnica de Madrid
Resumo:
In this paper, vehicle-track interaction for a new slab track design, conceived to reduce noise and vibration levels has been analyzed, assessing the derailment risk for trains running on curved track when encountering a broken rail. Two different types of rail fastening systems with different elasticities have been analysed and compared. Numerical methods were used in order to simulate the dynamic behaviour of the train-track interaction. Multibody system (MBS) modelling techniques were combined with techniques based on the finite element method (FEM). MBS modelling was used for modelling the vehicle and FEM for simulating the elastic track. The simulation model was validated by comparing simulated results to experimental data obtained in field testing. During the simulations various safety indices, characteristic of derailment risk, were analysed. The simulations realised at the maximum running velocity of 110 km/h showed a similar behaviour for several track types. When reducing the running speed, the safety indices worsened for both cases. Although the worst behaviour was observed for the track with a greater elasticity, in none of the simulations did a derailment occur when running over the broken rail.
Resumo:
Vehicle–track interaction for a new resilient slab track designed to reduce noise and vibration levels was analysed, in order to assess the derailment risk on a curved track when encountering a broken rail. Sensitivity of the rail support spacing of the relative position of the rail breakage between two adjacent rail supports and of running speed were analysed for two different elasticities of the rail fastening system. In none of the cases analysed was observed an appreciable difference between either of the elastic systems. As was expected, the most unfavourable situations were those with greater rail support spacing and those with greater distance from the breakage to the nearest rail support, although in none of the simulations performed did a derailment occur when running over the broken rail. When varying the running speed, the most favourable condition was obtained for an intermediate speed, due to the superposition of two antagonistic effects.
Resumo:
Overhead rail current collector systems for railway traction offer certain features, such as low installation height and reduced maintenance, which make them predominantly suitable for use in underground train infrastructures. Due to the increased demands of modern catenary systems and higher running speeds of new vehicles, a more capable design of the conductor rail is needed. A new overhead conductor rail has been developed and its design has been patented [13]. Modern simulation and modelling techniques were used in the development approach. The new conductor rail profile has a dynamic behaviour superior to that of the system currently in use. Its innovative design permits either an increase of catenary support spacing or a higher vehicle running speed. Both options ensure savings in installation or operating costs. The simulation model used to optimise the existing conductor rail profile included both a finite element model of the catenary and a three-dimensional multi-body system model of the pantograph. The contact force that appears between pantograph and catenary was obtained in simulation. A sensitivity analysis of the key parameters that influence in catenary dynamics was carried out, finally leading to the improved design.
Resumo:
Flat or worn wheels rolling on rough or corrugated tracks can provoke airborne noise and ground-borne vibration, which can be a serious concern for nearby neighbours of urban rail transit lines. Among the various treatments used to reduce vibration and noise, resilient wheels play an important role. In conventional resilient wheels, a slightly prestressed Vshaped rubber ring is mounted between the steel wheel centre and tyre. The elastic layer enhances rolling noise and vibration suppression, as well as impact reduction on the track. In this paper the effectiveness of resilient wheels in underground lines, in comparison to monobloc ones, is assessed. The analysed resilient wheel is able to carry greater loads than standard resilient wheels used for light vehicles. It also presents a greater radial resiliency and a higher axial stiffness than conventional Vwheels. The finite element method was used in this study. A quarter car model was defined, in which the wheelset was modelled as an elastic body. Several simulations were performed in order to assess the vibrational behaviour of elastic wheels, including modal, harmonic and random vibration analysis, the latter allowing the introduction of realistic vertical track irregularities, as well as the influence of the running speed. Due to numerical problems some simplifications were needed. Parametric variations were also performed, in which the sensitivity of the whole system to variations of rubber prestress and Poisson’s ratio of the elastic material was assessed.Results are presented in the frequency domain, showing a better performance of the resilient wheels for frequencies over 200 Hz. This result reveals the ability of the analyzed design to mitigate rolling noise, but not structural vibrations, which are primarily found in the lower frequency range.
Resumo:
In many cases the only places available for the construction of a new car park are the existing streets or roads. These streets may also have important or historic buildings very close to the structure, which means that they cannot be disturbed in any way during the construction of the parking structure. In many cases the only places available for the construction of a new car park are the existing streets or roads. These streets may also have important or historic buildings very close to the structure, which means that they cannot be disturbed in any way during the construction of the parking structure.
Resumo:
Underground coal mines explosions generally arise from the inflammation of a methane/air mixture. This explosion can also generate a subsequent coal dust explosion. Traditionally such explosions have being fought eliminating one or several of the factors needed by the explosion to take place. Although several preventive measures are taken to prevent explosions, other measures should be considered to reduce the effects or even to extinguish the flame front. Unlike other protection methods that remove one or two of the explosion triangle elements, namely; the ignition source, the oxidizing agent and the fuel, explosion barriers removes all of them: reduces the quantity of coal in suspension, cools the flame front and the steam generated by vaporization removes the oxygen present in the flame. The present paper is essentially based on the comprehensive state-of–the-art of Protective Systems in underground coal mines, and particularly on the application of Explosion Barriers to improve safety level in Spanish coal mining industry. After an exhaustive study of series EN 14591 standards covering explosion prevention and protection in underground mines, authors have proven explosion barriers effectiveness in underground galleries by Full Scale Tests performed in Polish Barbara experimental mine, showing that the barriers can reduce the effects of methane and/or flammable coal dust explosions to a satisfactory safety level.
Resumo:
The main objective of this research is to promote passive thermal design techniques in the construction of wineries. Natural ventilation in underground cellars is analyzed, focusing on the entrance tunnel, the ventilation chimney and the cave. A monitoring system was designed in order to detect changes in the indoor conditions and outdoor air infiltration. Monitoring process was carried out during one year. Results show the influence of outside temperature, ventilation chimney and access tunnel on the conditions inside the underground cellar. During hot periods, natural ventilation has a negligible influence on the indoor ambience, despite the permanently open vents in the door and chimney. The tunnel and ventilation chimney work as a temperature regulator, dampening outside fluctuations. Forced ventilation is necessary when a high air exchange ratio is needed. During cold periods, there is greater instability as a result of increased natural ventilation. The temperature differences along the tunnel are reduced, reflecting a homogenization and mixing of the air. The ventilation flow is sufficient to modify the temperature and relative humidity of the cave. Forced ventilation is not necessary in this period. During the intermediate periods --autumn and spring-- occurs different behaviors based on time of day.
Resumo:
The underground cellars of the Duero River basin are part of spread and damaged agricultural landscape which is in danger of disappearing. These architectural complexes are allocated next to small towns. Constructions are mostly dug in the ground with a gallery down or "barrel" strait through which you access the cave or cellar. This wider space is used to make and store wine. Observation and detection of the winery both on the outside and underground is essential to make an inventory of the rural heritage. Geodetection is a non-invasive technique, suitable to determinate with precision buried structures in the ground. The undertaken works include LIDAR survey techniques, GNSS and GPR obtained data. The results are used to identify with centimetric precision construction elements forming the winery. Graphic and cartographic obtained documents allow optimum visualization of the studied field and can be used in the reconstruction of the place.
Resumo:
Underground dwellings are the maximum example of the vernacular architecture adaptation to the climatic conditions in areas with high annual and daily thermal fluctuations. This paper summarizes the systematic research about the energy performance of this popular architecture and their adaptation to the outdoor conditions in the case of the low area of the River Tajuña and its surroundings. Some considerations on their maintenance and renovation arise from the research.
Resumo:
The underground cellars that appear in different parts of Spain are part of an agricultural landscape dispersed, sometimes damaged, others at risk of disappearing. This paper studies the measurement and display of a group of wineries located in Atauta (Soria), in the Duero River corridor. It is a unique architectural complex, facing rising, built on a smooth hillock as shown in Fig. 1. These constructions are excavated in the ground. The access to the cave or underground cellar has a shape of a narrow tube or down gallery. Immediately after, this space gets wider. There, wine is produced and stored [1]. Observation and detection of the underground cellar, both on the outside and underground, it is essential to make an inventory of the rural patrimony [2]. The geodetection is a noninvasive technique, adequate to accurately locate buried structures in the ground. Works undertaken include topographic work with the LIDAR techniques and integration with data obtained by GNSS and GPR.
Resumo:
The underground cellars that appear in different parts of Spain are part of an agricultural landscape dispersed, sometimes damaged, others at risk of disappearing. This paper studies the measurement and display of a group of wineries located in Atauta (Soria), in the Duero River corridor.
Resumo:
Geographic information technologies (GIT) are essential to many fields of research, such as the preservation and dissemination of cultural heritage buildings, a category which includes traditional underground wine cellars. This article presents a methodology based on research carried out on this type of rural heritage building. The data were acquired using the following sensors: EDM, total station, close-range photogrammetry and laser scanning, and subsequently processed with a specific software which was verified for each case, in order to obtain a satisfactory graphic representation of these underground wine cellars. Two key aspects of this work are the accuracy of the data processing and the visualization of these traditional constructions. The methodology includes an application for geovisualizing these traditional constructions on mobile devices in order to contribute to raising awareness of this unique heritage.
Resumo:
This paper deals with petrological and petrophysical features of the Hontaria's stone, Burgos (Spain), with which many important monuments were built in northern Spain, in orderr to establish a basis for individual monument restoration. The study contains an historical reference to sorne buildings in which this stone was employed, geological considerations of the origin area, laboratory analysis of the samples, and results of the most common characterization tests. As a conclusion, it can be stated that the Hontoria's stone is apure limestone, with good mechanical and hydrological behaviour, resistent to weathering, easy to quarry (underground mining) and with large resources
Resumo:
A probabilistic safety assessment (PSA) is being developed for a steam-methane reforming hydrogenproduction plant linked to a high-temperature gas-cooled nuclear reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute's (JAERI) High Temperature Engineering Test Reactor (HTTR) prototype in Japan. The objective of this paper is to show how the PSA can be used for improving the design of the coupled plants. A simplified HAZOP study was performed to identify initiating events, based on existing studies. The results of the PSA show that the average frequency of an accident at this complex that could affect the population is 7 × 10−8 year−1 which is divided into the various end states. The dominant sequences are those that result in a methane explosion and occur with a frequency of 6.5 × 10−8 year−1, while the other sequences are much less frequent. The health risk presents itself if there are people in the vicinity who could be affected by the explosion. This analysis also demonstrates that an accident in one of the plants has little effect on the other. This is true given the design base distance between the plants, the fact that the reactor is underground, as well as other safety characteristics of the HTGR.
Resumo:
The Chonta Mine (75º00’30” W & 13º04’30”S, 4495 to 5000 m absl), owned by Compañía Minera Caudalosa, operates a polymetallic Zn-Pb-Cu-Ag vein system of the low sulphidation epithermal type, hosted by cenozoic volcanics of dacitic to andesitic composition (Domos de Lava Formation). Veta Rublo, one of the main veins of the system, is worked underground to nearly 300 m. It strikes 60-80º NE and dips 60-70º SE; its width varies between 0.30 and 2.20m, and it crops out along 1 km, but is continued along strike by other veins, as Veta Caudalosa, for some 5 km. Typical metal contents are 7% Zn, 5% Pb, 0.4% Cu and 3 oz/t Ag, with quartz, sericite, sphalerite, galena, pyrite, chalcopyrite, fahlore as main minerals, and minor carbonate and sulphosalts.