5 resultados para UPPER-LEVEL FRONTOGENESIS
em Universidad Politécnica de Madrid
Resumo:
The objective of this paper is to address the methodological process of a teaching strategy for training project management complexity in postgraduate programs. The proposal is made up of different methods —intuitive, comparative, deductive, case study, problem-solving Project-Based Learning— and different activities inside and outside the classroom. This integration of methods motivated the current use of the concept of “learning strategy”. The strategy has two phases: firstly, the integration of the competences —technical, behavioral and contextual—in real projects; and secondly, the learning activity was oriented in upper level of knowledge, the evaluating the complexity for projects management in real situations. Both the competences in the learning strategy and the Project Complexity Evaluation are based on the ICB of IPMA. The learning strategy is applied in an international Postgraduate Program —Erasmus Mundus Master of Science— with the participation of five Universities of the European Union. This master program is fruit of a cooperative experience from one Educative Innovation Group of the UPM -GIE-Project-, two Research Groups of the UPM and the collaboration with other external agents to the university. Some reflections on the experience and the main success factors in the learning strategy were presented in the paper
Resumo:
The objective of this paper is to address the methodological process of a teaching strategy for training project management complexity in postgraduate programs. The proposal is made up of different methods —intuitive, comparative, deductive, case study, problem-solving Project-Based Learning— and different activities inside and outside the classroom. This integration of methods motivated the current use of the concept of ―learning strategy‖. The strategy has two phases: firstly, the integration of the competences —technical, behavioral and contextual—in real projects; and secondly, the learning activity was oriented in upper level of knowledge, the evaluating the complexity for projects management in real situations. Both the competences in the learning strategy and the Project Complexity Evaluation are based on the ICB of IPMA. The learning strategy is applied in an international Postgraduate Program —Erasmus Mundus Master of Science— with the participation of five Universities of the European Union. This master program is fruit of a cooperative experience from one Educative Innovation Group of the UPM -GIE-Project-, two Research Groups of the UPM and the collaboration with other external agents to the university. Some reflections on the experience and the main success factors in the learning strategy were presented in the paper.
Resumo:
This article presents a cartographic system to facilitate cooperative manoeuvres among autonomous vehicles in a well-known environment. The main objective is to design an extended cartographic system to help in the navigation of autonomous vehicles. This system has to allow the vehicles not only to access the reference points needed for navigation, but also noticeable information such as the location and type of traffic signals, the proximity to a crossing, the streets en route, etc. To do this, a hierarchical representation of the information has been chosen, where the information has been stored in two levels. The lower level contains the archives with the Universal Traverse Mercator (UTM) coordinates of the points that define the reference segments to follow. The upper level contains a directed graph with the relational database in which streets, crossings, roundabouts and other points of interest are represented. Using this new system it is possible to know when the vehicle approaches a crossing, what other paths arrive at that crossing, and, should there be other vehicles circulating on those paths and arriving at the crossing, which one has the highest priority. The data obtained from the cartographic system is used by the autonomous vehicles for cooperative manoeuvres.
Resumo:
The extreme runup is a key parameter for a shore risk analysis in which the accurate and quantitative estimation of the upper limit reached by waves is essential. Runup can be better approximated by splitting the setup and swash semi-amplitude contributions. In an experimental study recording setup becomes difficult due to infragravity motions within the surf zone, hence, it would be desirable to measure the setup with available methodologies and devices. In this research, an analysis is made of evaluated the convenience of direct estimation setup as the medium level in the swash zone for experimental runup analysis through a physical model. A physical mobile bed model was setup in a wave flume at the Laboratory for Maritime Experimentation of CEDEX. The wave flume is 36 metres long, 6.5 metres wide and 1.3 metres high. The physical model was designed to cover a reasonable range of parameters, three different slopes (1/50, 1/30 and 1/20), two sand grain sizes (D50 = 0.12 mm and 0.70 mm) and a range for the Iribarren number in deep water (ξ0) from 0.1 to 0.6. Best formulations were chosen for estimating a theoretical setup in the physical model application. Once theoretical setup had been obtained, a comparison was made with an estimation of the setup directly as a medium level of the oscillation in swash usually considered in extreme runup analyses. A good correlation was noted between both theoretical and time-averaging setup and a relation is proposed. Extreme runup is analysed through the sum of setup and semi-amplitude of swash. An equation is proposed that could be applied in strong foreshore slope-dependent reflective beaches.
Resumo:
Three-dimensional kinematic analysis provides quantitative assessment of upper limb motion and is used as an outcome measure to evaluate movement disorders. The aim of the present study is to present a set of kinematic metrics for quantifying characteristics of movement performance and the functional status of the subject during the execution of the activity of daily living (ADL) of drinking from a glass. Then, the objective is to apply these metrics in healthy people and a population with cervical spinal cord injury (SCI), and to analyze the metrics ability to discriminate between healthy and pathologic people. 19 people participated in the study: 7 subjects with metameric level C6 tetraplegia, 4 subjects with metameric level C7 tetraplegia and 8 healthy subjects. The movement was recorded with a photogrammetry system. The ADL of drinking was divided into a series of clearly identifiable phases to facilitate analysis. Metrics describing the time of the reaching phase, the range of motion of the joints analyzed, and characteristics of movement performance such as the efficiency, accuracy and smoothness of the distal segment and inter-joint coordination were obtained. The performance of the drinking task was more variable in people with SCI compared to the control group in relation to the metrics measured. Reaching time was longer in SCI groups. The proposed metrics showed capability to discriminate between healthy and pathologic people. Relative deficits in efficiency were larger in SCI people than in controls. These metrics can provide useful information in a clinical setting about the quality of the movement performed by healthy and SCI people during functional activities.