4 resultados para UP-CONVERSION

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been proposed that the use of self-assembled quantum dot (QD) arrays can break the Shockley-Queisser efficiency limit by extending the absorption of solar cells into the low-energy photon range while preserving their output voltage. This would be possible if the infrared photons are absorbed in the two sub-bandgap QD transitions simultaneously and the energy of two photons is added up to produce one single electron-hole pair, as described by the intermediate band model. Here, we present an InAs/Al 0.25Ga 0.75As QD solar cell that exhibits such electrical up-conversion of low-energy photons. When the device is monochromatically illuminated with 1.32 eV photons, open-circuit voltages as high as 1.58 V are measured (for a total gap of 1.8 eV). Moreover, the photocurrent produced by illumination with photons exciting the valence band to intermediate band (VB-IB) and the intermediate band to conduction band (IB-CB) transitions can be both spectrally resolved. The first corresponds to the QD inter-band transition and is observable for photons of energy mayor que 1 eV, and the later corresponds to the QD intra-band transition and peaks around 0.5 eV. The voltage up-conversion process reported here for the first time is the key to the use of the low-energy end of the solar spectrum to increase the conversion efficiency, and not only the photocurrent, of single-junction photovoltaic devices. In spite of the low absorption threshold measured in our devices - 0.25 eV - we report open-circuit voltages at room temperature as high as 1.12 V under concentrated broadband illumination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The preparation of LiNbO3:Er3+/Yb3+ nanocrystals and their up-conversion properties have been studied. It is demonstrated that polyethyleneimine- (PEI) assisted dispersion procedures allow obtaining stable aqueous LiNbO3:Er3+/Yb3+ powder suspensions, with average size particles well below the micron range (100–200 nm) and the isoelectric point of the suspension reaching values well above pH 7. After excitation of Yb3+ ions at a wavelength of 980 nm, the suspensions exhibit efficient, and stable, IR-to-visible (green and red) up-conversion properties, easily observed by the naked eye, very similar to those of the starting crystalline bulk material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El trabajo que ha dado lugar a esta Tesis Doctoral se enmarca en la invesitagación en células solares de banda intermedia (IBSCs, por sus siglas en inglés). Se trata de un nuevo concepto de célula solar que ofrece la posibilidad de alcanzar altas eficiencias de conversión fotovoltaica. Hasta ahora, se han demostrado de manera experimental los fundamentos de operación de las IBSCs; sin embargo, esto tan sólo has sido posible en condicines de baja temperatura. El concepto de banda intermedia (IB, por sus siglas en inglés) exige que haya desacoplamiento térmico entre la IB y las bandas de valencia y conducción (VB and CB, respectivamente, por sus siglas en inglés). Los materiales de IB actuales presentan un acoplamiento térmico demasiado fuerte entre la IB y una de las otras dos bandas, lo cual impide el correcto funcionamiento de las IBSCs a temperatura ambiente. En el caso particular de las IBSCs fabricadas con puntos cuánticos (QDs, por sus siglas en inglés) de InAs/GaAs - a día de hoy, la tecnología de IBSC más estudiada - , se produce un rápido intercambio de portadores entre la IB y la CB, por dos motivos: (1) una banda prohibida estrecha (< 0.2 eV) entre la IB y la CB, E^, y (2) la existencia de niveles electrónicos entre ellas. El motivo (1) implica, a su vez, que la máxima eficiencia alcanzable en estos dispositivos es inferior al límite teórico de la IBSC ideal, en la cual E^ = 0.71 eV. En este contexto, nuestro trabajo se centra en el estudio de IBSCs de alto gap (o banda prohibida) fabricadsas con QDs, o lo que es lo mismo, QD-IBSCs de alto gap. Hemos fabricado e investigado experimentalmente los primeros prototipos de QD-IBSC en los que se utiliza AlGaAs o InGaP para albergar QDs de InAs. En ellos demostramos une distribución de gaps mejorada con respecto al caso de InAs/GaAs. En concreto, hemos medido valores de E^ mayores que 0.4 eV. En los prototipos de InAs/AlGaAs, este incremento de E^ viene acompaado de un incremento, en más de 100 meV, de la energía de activación del escape térmico. Además, nuestros dispositivos de InAs/AlGaAs demuestran conversión a la alza de tensión; es decir, la producción de una tensión de circuito abierto mayor que la energía de los fotones (dividida por la carga del electrón) de un haz monocromático incidente, así como la preservación del voltaje a temperaura ambiente bajo iluminación de luz blanca concentrada. Asimismo, analizamos el potencial para detección infrarroja de los materiales de IB. Presentamos un nuevo concepto de fotodetector de infrarrojos, basado en la IB, que hemos llamado: fotodetector de infrarrojos activado ópticamente (OTIP, por sus siglas en inglés). Nuestro novedoso dispositivo se basa en un nuevo pricipio físico que permite que la detección de luz infrarroja sea conmutable (ON y OFF) mediante iluminación externa. Hemos fabricado un OTIP basado en QDs de InAs/AlGaAs con el que demostramos fotodetección, bajo incidencia normal, en el rango 2-6/xm, activada ópticamente por un diodoe emisor de luz de 590 nm. El estudio teórico del mecanismo de detección asistido por la IB en el OTIP nos lleva a poner en cuestión la asunción de quasi-niveles de Fermi planos en la zona de carga del espacio de una célula solar. Apoyados por simuaciones a nivel de dispositivo, demostramos y explicamos por qué esta asunción no es válida en condiciones de corto-circuito e iluminación. También llevamos a cabo estudios experimentales en QD-IBSCs de InAs/AlGaAs con la finalidad de ampliar el conocimiento sobre algunos aspectos de estos dispositivos que no han sido tratados aun. En particular, analizamos el impacto que tiene el uso de capas de disminución de campo (FDLs, por sus siglas en inglés), demostrando su eficiencia para evitar el escape por túnel de portadores desde el QD al material anfitrión. Analizamos la relación existente entre el escape por túnel y la preservación del voltaje, y proponemos las medidas de eficiencia cuántica en función de la tensión como una herramienta útil para evaluar la limitación del voltaje relacionada con el túnel en QD-IBSCs. Además, realizamos medidas de luminiscencia en función de la temperatura en muestras de InAs/GaAs y verificamos que los resltados obtenidos están en coherencia con la separación de los quasi-niveles de Fermi de la IB y la CB a baja temperatura. Con objeto de contribuir a la capacidad de fabricación y caracterización del Instituto de Energía Solar de la Universidad Politécnica de Madrid (IES-UPM), hemos participado en la instalación y puesta en marcha de un reactor de epitaxia de haz molecular (MBE, por sus siglas en inglés) y el desarrollo de un equipo de caracterización de foto y electroluminiscencia. Utilizando dicho reactor MBE, hemos crecido, y posteriormente caracterizado, la primera QD-IBSC enteramente fabricada en el IES-UPM. ABSTRACT The constituent work of this Thesis is framed in the research on intermediate band solar cells (IBSCs). This concept offers the possibility of achieving devices with high photovoltaic-conversion efficiency. Up to now, the fundamentals of operation of IBSCs have been demonstrated experimentally; however, this has only been possible at low temperatures. The intermediate band (IB) concept demands thermal decoupling between the IB and the valence and conduction bands. Stateof- the-art IB materials exhibit a too strong thermal coupling between the IB and one of the other two bands, which prevents the proper operation of IBSCs at room temperature. In the particular case of InAs/GaAs quantum-dot (QD) IBSCs - as of today, the most widely studied IBSC technology - , there exist fast thermal carrier exchange between the IB and the conduction band (CB), for two reasons: (1) a narrow (< 0.2 eV) energy gap between the IB and the CB, EL, and (2) the existence of multiple electronic levels between them. Reason (1) also implies that maximum achievable efficiency is below the theoretical limit for the ideal IBSC, in which EL = 0.71 eV. In this context, our work focuses on the study of wide-bandgap QD-IBSCs. We have fabricated and experimentally investigated the first QD-IBSC prototypes in which AlGaAs or InGaP is the host material for the InAs QDs. We demonstrate an improved bandgap distribution, compared to the InAs/GaAs case, in our wide-bandgap devices. In particular, we have measured values of EL higher than 0.4 eV. In the case of the AlGaAs prototypes, the increase in EL comes with an increase of more than 100 meV of the activation energy of the thermal carrier escape. In addition, in our InAs/AlGaAs devices, we demonstrate voltage up-conversion; i. e., the production of an open-circuit voltage larger than the photon energy (divided by the electron charge) of the incident monochromatic beam, and the achievement of voltage preservation at room temperature under concentrated white-light illumination. We also analyze the potential of an IB material for infrared detection. We present a IB-based new concept of infrared photodetector that we have called the optically triggered infrared photodetector (OTIP). Our novel device is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. We have fabricated an OTIP based on InAs/AlGaAs QDs with which we demonstrate normal incidence photodetection in the 2-6 /xm range optically triggered by a 590 nm light-emitting diode. The theoretical study of the IB-assisted detection mechanism in the OTIP leads us to questioning the assumption of flat quasi-Fermi levels in the space-charge region of a solar cell. Based on device simulations, we prove and explain why this assumption is not valid under short-circuit and illumination conditions. We perform new experimental studies on InAs/GaAs QD-IBSC prototypes in order to gain knowledge on yet unexplored aspects of the performance of these devices. Specifically, we analyze the impact of the use of field-damping layers, and demonstrate this technique to be efficient for avoiding tunnel carrier escape from the QDs to the host material. We analyze the relationship between tunnel escape and voltage preservation, and propose voltage-dependent quantum efficiency measurements as an useful technique for assessing the tunneling-related limitation to the voltage preservation of QD-IBSC prototypes. Moreover, we perform temperature-dependent luminescence studies on InAs/GaAs samples and verify that the results are consistent with a split of the quasi-Fermi levels for the CB and the IB at low temperature. In order to contribute to the fabrication and characterization capabilities of the Solar Energy Institute of the Universidad Polite´cnica de Madrid (IES-UPM), we have participated in the installation and start-up of an molecular beam epitaxy (MBE) reactor and the development of a photo and electroluminescence characterization set-up. Using the MBE reactor, we have manufactured and characterized the first QD-IBSC fully fabricated at the IES-UPM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Light confinement strategies play a crucial role in the performance of thin-film (TF) silicon solar cells. One way to reduce the optical losses is the texturing of the transparent conductive oxide (TCO) that acts as the front contact. Other losses arise from the mismatch between the incident light spectrum and the spectral properties of the absorbent material that imply that low energy photons (below the bandgap value) are not absorbed, and therefore can not generate photocurrent. Up-conversion techniques, in which two sub-bandgap photons are combined to give one photon with a better matching with the bandgap, were proposed to overcome this problem. In particular, this work studies two strategies to improve light management in thin film silicon solar cells using laser technology. The first one addresses the problem of TCO surface texturing using fully commercial fast and ultrafast solid state laser sources. Aluminum doped Zinc Oxide (AZO) samples were laser processed and the results were optically evaluated by measuring the haze factor of the treated samples. As a second strategy, laser annealing experiments of TCOs doped with rare earth ions are presented as a potential process to produce layers with up-conversion properties, opening the possibility of its potential use in high efficiency solar cells.