6 resultados para UNIVERSAL DENSITY PROFILE
em Universidad Politécnica de Madrid
Resumo:
A sounding rocket experiment is proposed to carry out two experiments by the conductive bare-tether; 1) the test of the OML (Orbital-Motion-Limited) theory to collect electron, and II) the test of techniques to determine (neutral) density profile in critical E-layer. The main driver of the mission is provide a space tether technology experiment in low-Earth-Orbit (LEO) deploying a long tape tether in space and verify the performance of the bare electrodynamic tape tether. The sounding rocket experiment will show no danger to other satellites as the tether missions YES1, SEDSAT, and ProCEDS, which is cancelled just for afraid of collision with the ISS orbit. Also, the sounding rocket mission is possible to demonstrate the bare tether technology in low cost, simple mission concept, fast realization for space structures. The present sounding rocket experiment is expected to be the first conductive bare tether experiment.
Resumo:
A mission on board a sounding rocket to carry out two bare-tether experiments is proposed: a test of orbital-motion-limited (OML) collection and the proof-of-flight of a technique to determine the (neutral) density vertical profile in the critical E-layer. Since full bias from the motional field will be small (~ 20V), corresponding to a tape 1 km long and V rocket <8 km/s, a power source with a range of supply voltages of few kV would be used. First, the negative terminal of the supply would be connected to the tape, and the positive terminal to a round, conductive boom of length 10 - 20 m; electrons collected by the boom cross the supply into the tape, where they leak out at the rate of ion impact plus secondary emission. Determination of the density profile from measurements of auroral emissions observed from the rocket, as secondaries racing down the magnetic field reach an E-layer footprint, are discussed. Next the positive terminal of the voltage supply is connected to the tape, and the negative terminal to a Hollow Cathode (HC); electrons now collected by the tape cross the supply, and are ejected at the HC. The opposite connections, with current collection operated by tape and boom, and operating on electrons and ions, and through partial switching in the supply, allow testing OML collection in almost all respects it depends on.
Resumo:
Use of a (bare) conductive tape electrically floating in LEO as an effective e-beam source that produces artificial auroras, and is free of problems that have marred standard beams, is considered. Ambient ions impacting the tape with KeV energies over most of its length liberate secondary electrons, which race down the magnetic field and excite neutrals in the E-layer, resulting in auroral emissions. The tether would operate at night-time with both a power supply and a plasma contactor off; power and contactor would be on at daytime for reboost. The optimal tape thickness yielding a minimum mass for an autonomous system is determined; the alternative use of an electric thruster for day reboost, depending on mission duration, is discussed. Measurements of emission brightness from the spacecraft could allow determination of the (neutral) density vertical profile in the critical E-layer; the flux and energy in the beam, varying along the tether, allow imaging line-of-sight integrated emissions that mix effects with altitude-dependent neutral density and lead to a brightness peak in the beam footprint at the E-layer. Difficulties in tomographic inversion, to determine the density profile, result from beam broadening, due to elastic collisions, which flattens the peak, and to the highly nonlinear functional dependency of line-of-sight brightness. Some dynamical issues are discussed.
Resumo:
This paper studies the relationship between aging, physical changes and the results of non-destructive testing of plywood. 176 pieces of plywood were tested to analyze their actual and estimated density using non-destructive methods (screw withdrawal force and ultrasound wave velocity) during a laboratory aging test. From the results of statistical analysis it can be concluded that there is a strong relationship between the non-destructive measurements carried out, and the decline in the physical properties of the panels due to aging. The authors propose several models to estimate board density. The best results are obtained with ultrasound. A reliable prediction of the degree of deterioration (aging) of board is presented. Breeder blanket materials have to produce tritium from lithium while fulfilling several strict conditions. In particular, when dealing with materials to be applied in fusion reactors, one of the key questions is the study of light ions retention, which can be produced by transmutation reactions and/or introduced by interaction with the plasma. In ceramic breeders the understanding of the hydrogen isotopes behaviour and specially the diffusion of tritium to the surface is crucial. Moreover the evolution of the microstructure during irradiation with energetic ions, neutrons and electrons is complex because of the interaction of a high number of processes.
Resumo:
Resonant absorption of p-polarized light shined on a plane-layered plasma with a step profile, is discussed as a function of wavelength (or critical density n,) of the light: for simplicity the incidence angle is assumed small. If n, lies within or above the step, the absorption A is given by Ginzburg’s result modified by strong reflections at the foot and top of the step. The absorption above is total for particular values of nc and U. For n, crossing the top of the density step the absorption is not monotonical: it exhibits a minimum that vanishes for zero radius of curvature U there and zero collision frequency 1’ (A - Iln VI-’). The results are applied to the profile produced by irradiating a solid target with a high-intensity pulse that steepens the plasma by radiation pressure.
Resumo:
Resonance absorption of p-polarized light, incident at angle 6 on a flowing, stratified plasma, is analyzed; profile steepening within (i) a layer around the turning point, and (ii) a thinner,embedded sublayer at the critical surface is taken into account self-consistently. The entire steepened region is taken as collisionless and isothermal. The structure of the main layer shows a variety of regimes, depending on how the flow crosses a sonic point. The structure of the sublayer is also determined; it is entirely subsonic (with no wave breaking) for a well-defined,broad parameter range. Density changes across both layer and sublayer, and fractional absorption, are given in terms of [(wavelength)2 Xintensity/temperature], and (temperature/mec2). The flow outside the double structure is also analyzed for particular conditions.