11 resultados para Twitter election
em Universidad Politécnica de Madrid
Resumo:
Durante los últimos años ha aumentado la presencia de personas pertenecientes al mundo de la política en la red debido a la proliferación de las redes sociales, siendo Twitter la que mayor repercusión mediática tiene en este ámbito. El estudio del comportamiento de los políticos en Twitter y de la acogida que tienen entre los ciudadanos proporciona información muy valiosa a la hora de analizar las campañas electorales. De esta forma, se puede estudiar la repercusión real que tienen sus mensajes en los resultados electorales, así como distinguir aquellos comportamientos que tienen una mayor aceptación por parte de la la ciudadaná. Gracias a los avances desarrollados en el campo de la minería de textos, se poseen las herramientas necesarias para analizar un gran volumen de textos y extraer de ellos información de utilidad. Este proyecto tiene como finalidad recopilar una muestra significativa de mensajes de Twitter pertenecientes a los candidatos de los principales partidos políticos que se presentan a las elecciones autonómicas de Madrid en 2015. Estos mensajes, junto con las respuestas de otros usuarios, se han analizado usando algoritmos de aprendizaje automático y aplicando las técnicas de minería de textos más oportunas. Los resultados obtenidos para cada político se han examinado en profundidad y se han presentado mediante tablas y gráficas para facilitar su comprensión.---ABSTRACT---During the past few years the presence on the Internet of people related with politics has increased, due to the proliferation of social networks. Among all existing social networks, Twitter is the one which has the greatest media impact in this field. Therefore, an analysis of the behaviour of politicians in this social network, along with the response from the citizens, gives us very valuable information when analysing electoral campaigns. This way it is possible to know their messages impact in the election results. Moreover, it can be inferred which behaviours have better acceptance among the citizenship. Thanks to the advances achieved in the text mining field, its tools can be used to analyse a great amount of texts and extract from them useful information. The present project aims to collect a significant sample of Twitter messages from the candidates of the principal political parties for the 2015 autonomic elections in Madrid. These messages, as well as the answers received by the other users, have been analysed using machine learning algorithms and applying the most suitable data mining techniques. The results obtained for each politician have been examined in depth and have been presented using tables and graphs to make its understanding easier.
Resumo:
Manual de Twitter Segundo módulo de 6 del curso de Redes Sociales aplicadas al ámbito universitario, en el que se explica el uso de Twitter.
Resumo:
Aplicaciones de Twitter a la enseñanza Universitaria Segundo módulo de 6 del curso de Redes Sociales aplicadas al ámbito universitario, en el que se explica el uso de Twitter aplicado a las enseñanzas universitarias con ejemplos.
Resumo:
In the last several years, micro-blogging Online Social Networks (OSNs), such as Twitter, have taken the world by storm, now boasting over 100 million subscribers. As an unparalleled stage for an enormous audience, they offer fast and reliable centralized diffusion of pithy tweets to great multitudes of information-hungry and always-connected followers. At the same time, this information gathering and dissemination paradigm prompts some important privacy concerns about relationships between tweeters, followers and interests of the latter. In this paper, we assess privacy in today?s Twitter-like OSNs and describe an architecture and a trial implementation of a privacy-preserving service called Hummingbird. It is essentially a variant of Twitter that protects tweet contents, hashtags and follower interests from the (potentially) prying eyes of the centralized server. We argue that, although inherently limited by Twitter?s mission of scalable information-sharing, this degree of privacy is valuable. We demonstrate, via a working prototype, that Hummingbird?s additional costs are tolerably low. We also sketch out some viable enhancements that might offer better privacy in the long term.
Resumo:
Twitter lists organise Twitter users into multiple, often overlapping, sets. We believe that these lists capture some form of emergent semantics, which may be useful to characterise. In this paper we describe an approach for such characterisation, which consists of deriving semantic relations between lists and users by analyzing the cooccurrence of keywords in list names. We use the vector space model and Latent Dirichlet Allocation to obtain similar keywords according to co-occurrence patterns. These results are then compared to similarity measures relying on WordNet and to existing Linked Data sets. Results show that co-occurrence of keywords based on members of the lists produce more synonyms and more correlated results to that of WordNet similarity measures.
Resumo:
In this work we study Twitter data to understand influence dynamics in social networks. We define user efficiency on Twitter, as the ratio between the emergent spreading process and the activity employed by the user. We characterize this property by means of a quantitative analysis of the structural and dynamical patterns emergent from human interactions, and show it to be universal across several Twitter conversations.
Resumo:
This paper describes our participation at SemEval- 2014 sentiment analysis task, in both contextual and message polarity classification. Our idea was to com- pare two different techniques for sentiment analysis. First, a machine learning classifier specifically built for the task using the provided training corpus. On the other hand, a lexicon-based approach using natural language processing techniques, developed for a ge- neric sentiment analysis task with no adaptation to the provided training corpus. Results, though far from the best runs, prove that the generic model is more robust as it achieves a more balanced evaluation for message polarity along the different test sets.
Resumo:
Sentiment analysis has recently gained popularity in the financial domain thanks to its capability to predict the stock market based on the wisdom of the crowds. Nevertheless, current sentiment indicators are still silos that cannot be combined to get better insight about the mood of different communities. In this article we propose a Linked Data approach for modelling sentiment and emotions about financial entities. We aim at integrating sentiment information from different communities or providers, and complements existing initiatives such as FIBO. The ap- proach has been validated in the semantic annotation of tweets of several stocks in the Spanish stock market, including its sentiment information.
Resumo:
In classical distributed systems, each process has a unique identity. Today, new distributed systems have emerged where a unique identity is not always possible to be assigned to each process. For example, in many sensor networks a unique identity is not possible to be included in each device due to its small storage capacity, reduced computational power, or the huge number of devices to be identified. In these cases, we have to work with anonymous distributed systems where processes cannot be identified. Consensus cannot be solved in classical and anonymous asynchronous distributed systems where processes can crash. To bypass this impossibility result, failure detectors are added to these systems. It is known that ? is the weakest failure detector class for solving consensus in classical asynchronous systems when amajority of processes never crashes. Although A? was introduced as an anonymous version of ?, to find the weakest failure detector in anonymous systems to solve consensus when amajority of processes never crashes is nowadays an open question. Furthermore, A? has the important drawback that it is not implementable. Very recently, A? has been introduced as a counterpart of ? for anonymous systems. In this paper, we show that the A? failure detector class is strictly weaker than A? (i.e., A? provides less information about process crashes than A?). We also present in this paper the first implementation of A? (hence, we also show that A? is implementable), and, finally, we include the first implementation of consensus in anonymous asynchronous systems augmented with A? and where a majority of processes does not crash.
Resumo:
Este trabajo trata de evaluar la capacidad de atracción turística de los Puntos de Interés oficiales (POIs) disponibles como datos geográficos abiertos y en las IDE locales mediante la información explícita e implícita de los Tweets geolocalizados. Los estudios sobre turismo tratan de obtener información del potencial turístico de una zona y la valoración de los turistas. Estos estudios tradicionalmente se basan en encuestas o entrevistas personales, realizadas desde entidades públicas o compañías privadas En el caso que nos ocupa existen estudios a nivel de Municipal, de la Comunidad autónoma y de entidades privadas relacionadas con el sector turístico de la cidudad de Madrid por estar considerado un sector estratégico para la economía regional. Las redes sociales, especialmente Twitter, ofrecen un alto potencial para la realización de trabajos de investigación y evaluación de áreas urbanas gracias a la información geográfica digital asociada. Se ha producido una evolución de la Información Geográfica Voluntaria (VGI) acuñada por Goodchild (2007) a la Información Geográfica de Medios Sociales (SMGI) acuñada por Floris y Campagna (2014). Esta nueva fuente de datos derivados, podria complementar la información de los datos públicos de turismo ofrecidos por nodos IDE u Open Data; por ejemplo: ayudaria a la validación de puntos de interés turístico o áreas de la ciudad, mejoraria la actualización de la información y a largo plazo, podria ayudar al desarrollo de estrategias y planes de turismo más eficientes.
Resumo:
This thesis is the result of a project whose objective has been to develop and deploy a dashboard for sentiment analysis of football in Twitter based on web components and D3.js. To do so, a visualisation server has been developed in order to present the data obtained from Twitter and analysed with Senpy. This visualisation server has been developed with Polymer web components and D3.js. Data mining has been done with a pipeline between Twitter, Senpy and ElasticSearch. Luigi have been used in this process because helps building complex pipelines of batch jobs, so it has analysed all tweets and stored them in ElasticSearch. To continue, D3.js has been used to create interactive widgets that make data easily accessible, this widgets will allow the user to interact with them and �filter the most interesting data for him. Polymer web components have been used to make this dashboard according to Google's material design and be able to show dynamic data in widgets. As a result, this project will allow an extensive analysis of the social network, pointing out the influence of players and teams and the emotions and sentiments that emerge in a lapse of time.