7 resultados para Twin Boundaries
em Universidad Politécnica de Madrid
Resumo:
This work aims to contribute to a further understanding of the fundamentals of crystallographic slip and grain boundary sliding in the γ-TiAl Ti–45Al–2Nb–2Mn (at%)–0.8 vol%TiB2 intermetallic alloy, by means of in situ high-temperature tensile testing combined with electron backscatter diffraction (EBSD). Several microstructures, containing different fractions and sizes of lamellar colonies and equiaxed γ-grains, were fabricated by either centrifugal casting or powder metallurgy, followed by heat treatment at 1300 °C and furnace cooling. in situ tensile and tensile-creep experiments were performed in a scanning electron microscope (SEM) at temperatures ranging from 580 °C to 700 °C. EBSD was carried out in selected regions before and after straining. Our results suggest that, during constant strain rate tests, true twin γ/γ interfaces are the weakest barriers to dislocations and, thus, that the relevant length scale might be influenced by the distance between non-true twin boundaries. Under creep conditions both grain/colony boundary sliding (G/CBS) and crystallographic slip are observed to contribute to deformation. The incidence of boundary sliding is particularly high in γ grains of duplex microstructures. The slip activity during creep deformation in different microstructures was evaluated by trace analysis. Special emphasis was placed in distinguishing the compliance of different slip events with the Schmid law with respect to the applied stress.
Resumo:
Las transformaciones martensíticas (MT) se definen como un cambio en la estructura del cristal para formar una fase coherente o estructuras de dominio multivariante, a partir de la fase inicial con la misma composición, debido a pequeños intercambios o movimientos atómicos cooperativos. En el siglo pasado se han descubierto MT en diferentes materiales partiendo desde los aceros hasta las aleaciones con memoria de forma, materiales cerámicos y materiales inteligentes. Todos muestran propiedades destacables como alta resistencia mecánica, memoria de forma, efectos de superelasticidad o funcionalidades ferroicas como la piezoelectricidad, electro y magneto-estricción etc. Varios modelos/teorías se han desarrollado en sinergia con el desarrollo de la física del estado sólido para entender por qué las MT generan microstructuras muy variadas y ricas que muestran propiedades muy interesantes. Entre las teorías mejor aceptadas se encuentra la Teoría Fenomenológica de la Cristalografía Martensítica (PTMC, por sus siglas en inglés) que predice el plano de hábito y las relaciones de orientación entre la austenita y la martensita. La reinterpretación de la teoría PTMC en un entorno de mecánica del continuo (CM-PTMC) explica la formación de los dominios de estructuras multivariantes, mientras que la teoría de Landau con dinámica de inercia desentraña los mecanismos físicos de los precursores y otros comportamientos dinámicos. La dinámica de red cristalina desvela la reducción de la dureza acústica de las ondas de tensión de red que da lugar a transformaciones débiles de primer orden en el desplazamiento. A pesar de las diferencias entre las teorías estáticas y dinámicas dado su origen en diversas ramas de la física (por ejemplo mecánica continua o dinámica de la red cristalina), estas teorías deben estar inherentemente conectadas entre sí y mostrar ciertos elementos en común en una perspectiva unificada de la física. No obstante las conexiones físicas y diferencias entre las teorías/modelos no se han tratado hasta la fecha, aun siendo de importancia crítica para la mejora de modelos de MT y para el desarrollo integrado de modelos de transformaciones acopladas de desplazamiento-difusión. Por lo tanto, esta tesis comenzó con dos objetivos claros. El primero fue encontrar las conexiones físicas y las diferencias entre los modelos de MT mediante un análisis teórico detallado y simulaciones numéricas. El segundo objetivo fue expandir el modelo de Landau para ser capaz de estudiar MT en policristales, en el caso de transformaciones acopladas de desplazamiento-difusión, y en presencia de dislocaciones. Comenzando con un resumen de los antecedente, en este trabajo se presentan las bases físicas de los modelos actuales de MT. Su capacidad para predecir MT se clarifica mediante el ansis teórico y las simulaciones de la evolución microstructural de MT de cúbicoatetragonal y cúbicoatrigonal en 3D. Este análisis revela que el modelo de Landau con representación irreducible de la deformación transformada es equivalente a la teoría CM-PTMC y al modelo de microelasticidad para predecir los rasgos estáticos durante la MT, pero proporciona una mejor interpretación de los comportamientos dinámicos. Sin embargo, las aplicaciones del modelo de Landau en materiales estructurales están limitadas por su complejidad. Por tanto, el primer resultado de esta tesis es el desarrollo del modelo de Landau nolineal con representación irreducible de deformaciones y de la dinámica de inercia para policristales. La simulación demuestra que el modelo propuesto es consistente fcamente con el CM-PTMC en la descripción estática, y también permite una predicción del diagrama de fases con la clásica forma ’en C’ de los modos de nucleación martensítica activados por la combinación de temperaturas de enfriamiento y las condiciones de tensión aplicada correlacionadas con la transformación de energía de Landau. Posteriomente, el modelo de Landau de MT es integrado con un modelo de transformación de difusión cuantitativa para elucidar la relajación atómica y la difusión de corto alcance de los elementos durante la MT en acero. El modelo de transformaciones de desplazamiento y difusión incluye los efectos de la relajación en borde de grano para la nucleación heterogenea y la evolución espacio-temporal de potenciales de difusión y movilidades químicas mediante el acoplamiento de herramientas de cálculo y bases de datos termo-cinéticos de tipo CALPHAD. El modelo se aplica para estudiar la evolución microstructural de aceros al carbono policristalinos procesados por enfriamiento y partición (Q&P) en 2D. La microstructura y la composición obtenida mediante la simulación se comparan con los datos experimentales disponibles. Los resultados muestran el importante papel jugado por las diferencias en movilidad de difusión entre la fase austenita y martensita en la distibución de carbono en las aceros. Finalmente, un modelo multi-campo es propuesto mediante la incorporación del modelo de dislocación en grano-grueso al modelo desarrollado de Landau para incluir las diferencias morfológicas entre aceros y aleaciones con memoria de forma con la misma ruptura de simetría. La nucleación de dislocaciones, la formación de la martensita ’butterfly’, y la redistribución del carbono después del revenido son bien representadas en las simulaciones 2D del estudio de la evolución de la microstructura en aceros representativos. Con dicha simulación demostramos que incluyendo las dislocaciones obtenemos para dichos aceros, una buena comparación frente a los datos experimentales de la morfología de los bordes de macla, la existencia de austenita retenida dentro de la martensita, etc. Por tanto, basado en un modelo integral y en el desarrollo de códigos durante esta tesis, se ha creado una herramienta de modelización multiescala y multi-campo. Dicha herramienta acopla la termodinámica y la mecánica del continuo en la macroescala con la cinética de difusión y los modelos de campo de fase/Landau en la mesoescala, y también incluye los principios de la cristalografía y de la dinámica de red cristalina en la microescala. ABSTRACT Martensitic transformation (MT), in a narrow sense, is defined as the change of the crystal structure to form a coherent phase, or multi-variant domain structures out from a parent phase with the same composition, by small shuffles or co-operative movements of atoms. Over the past century, MTs have been discovered in different materials from steels to shape memory alloys, ceramics, and smart materials. They lead to remarkable properties such as high strength, shape memory/superelasticity effects or ferroic functionalities including piezoelectricity, electro- and magneto-striction, etc. Various theories/models have been developed, in synergy with development of solid state physics, to understand why MT can generate these rich microstructures and give rise to intriguing properties. Among the well-established theories, the Phenomenological Theory of Martensitic Crystallography (PTMC) is able to predict the habit plane and the orientation relationship between austenite and martensite. The re-interpretation of the PTMC theory within a continuum mechanics framework (CM-PTMC) explains the formation of the multivariant domain structures, while the Landau theory with inertial dynamics unravels the physical origins of precursors and other dynamic behaviors. The crystal lattice dynamics unveils the acoustic softening of the lattice strain waves leading to the weak first-order displacive transformation, etc. Though differing in statics or dynamics due to their origins in different branches of physics (e.g. continuum mechanics or crystal lattice dynamics), these theories should be inherently connected with each other and show certain elements in common within a unified perspective of physics. However, the physical connections and distinctions among the theories/models have not been addressed yet, although they are critical to further improving the models of MTs and to develop integrated models for more complex displacivediffusive coupled transformations. Therefore, this thesis started with two objectives. The first one was to reveal the physical connections and distinctions among the models of MT by means of detailed theoretical analyses and numerical simulations. The second objective was to expand the Landau model to be able to study MTs in polycrystals, in the case of displacive-diffusive coupled transformations, and in the presence of the dislocations. Starting with a comprehensive review, the physical kernels of the current models of MTs are presented. Their ability to predict MTs is clarified by means of theoretical analyses and simulations of the microstructure evolution of cubic-to-tetragonal and cubic-to-trigonal MTs in 3D. This analysis reveals that the Landau model with irreducible representation of the transformed strain is equivalent to the CM-PTMC theory and microelasticity model to predict the static features during MTs but provides better interpretation of the dynamic behaviors. However, the applications of the Landau model in structural materials are limited due its the complexity. Thus, the first result of this thesis is the development of a nonlinear Landau model with irreducible representation of strains and the inertial dynamics for polycrystals. The simulation demonstrates that the updated model is physically consistent with the CM-PTMC in statics, and also permits a prediction of a classical ’C shaped’ phase diagram of martensitic nucleation modes activated by the combination of quenching temperature and applied stress conditions interplaying with Landau transformation energy. Next, the Landau model of MT is further integrated with a quantitative diffusional transformation model to elucidate atomic relaxation and short range diffusion of elements during the MT in steel. The model for displacive-diffusive transformations includes the effects of grain boundary relaxation for heterogeneous nucleation and the spatio-temporal evolution of diffusion potentials and chemical mobility by means of coupling with a CALPHAD-type thermo-kinetic calculation engine and database. The model is applied to study for the microstructure evolution of polycrystalline carbon steels processed by the Quenching and Partitioning (Q&P) process in 2D. The simulated mixed microstructure and composition distribution are compared with available experimental data. The results show that the important role played by the differences in diffusion mobility between austenite and martensite to the partitioning in carbon steels. Finally, a multi-field model is proposed by incorporating the coarse-grained dislocation model to the developed Landau model to account for the morphological difference between steels and shape memory alloys with same symmetry breaking. The dislocation nucleation, the formation of the ’butterfly’ martensite, and the redistribution of carbon after tempering are well represented in the 2D simulations for the microstructure evolution of the representative steels. With the simulation, we demonstrate that the dislocations account for the experimental observation of rough twin boundaries, retained austenite within martensite, etc. in steels. Thus, based on the integrated model and the in-house codes developed in thesis, a preliminary multi-field, multiscale modeling tool is built up. The new tool couples thermodynamics and continuum mechanics at the macroscale with diffusion kinetics and phase field/Landau model at the mesoscale, and also includes the essentials of crystallography and crystal lattice dynamics at microscale.
Resumo:
The purpose of this research is to characterise the mechanical properties of multicrystalline silicon for photovoltaic applications that was crystallised from silicon feedstock with a high content of several types of impurities. The mechanical strength, fracture toughness and elastic modulus were measured at different positions within a multicrystalline silicon block to quantify the effect of impurity segregation on these mechanical properties. The microstructure and fracture surfaces of the samples was exhaustively analysed with a scanning electron microscope in order to correlate the values of mechanical properties with material microstructure. Fracture stresses values were treated statistically via the Weibull statistics. The results of this research show that metals segregate to the top of the block, produce moderate microcracking and introduce high thermal stresses. Silicon oxide is produced at the bottom part of the silicon block, and its presence significantly reduces the mechanical strength and fracture toughness of multicrystalline silicon due to both thermal and elastic mismatch between silicon and the silicon oxide inclusions. Silicon carbide inclusions from the upper parts of the block increase the fracture toughness and elastic modulus of multicrystalline silicon. Additionally, the mechanical strength of multicrystalline silicon can increase when the radius of the silicon carbide inclusions is smaller than ~10 µm. The most damaging type of impurity inclusion for the multicrystalline silicon block studied in this work was amorphous silicon oxide. The oriented precipitation of silicon oxide at grain and twin boundaries eases the formation of radial cracks between inclusions and decreases significatively the mechanical strength of multicrystalline silicon. The second most influencing type of impurity inclusions were metals like aluminium and copper, that cause spontaneous microcracking in their surroundings after the crystallisation process, therefore reducing the mechanical response of multicrystalline silicon. Therefore, solar cell producers should pay attention to the content of metals and oxygen within the silicon feedstock in order to produce solar cells with reliable mechanical properties.
Resumo:
This paper describes the design of an original twin capacitive load that is able of tracing simultaneously the I?V characteristics of two photovoltaic modules. Besides, an example of the application of this dual system to the outdoor rating of photovoltaic modules is presented, whose results have shown a good degree of repeatability.
Resumo:
En los últimos años ha habido una fuerte tendencia a disminuir las emisiones de CO2 y su negativo impacto medioambiental. En la industria del transporte, reducir el peso de los vehículos aparece como la mejor opción para alcanzar este objetivo. Las aleaciones de Mg constituyen un material con gran potencial para el ahorro de peso. Durante la última década se han realizado muchos esfuerzos encaminados a entender los mecanismos de deformación que gobiernan la plasticidad de estos materiales y así, las aleaciones de Mg de colada inyectadas a alta presión y forjadas son todavía objeto de intensas campañas de investigación. Es ahora necesario desarrollar modelos que contemplen la complejidad inherente de los procesos de deformación de éstos. Esta tesis doctoral constituye un intento de entender mejor la relación entre la microestructura y el comportamiento mecánico de aleaciones de Mg, y dará como resultado modelos de policristales capaces de predecir propiedades macro- y microscópicas. La deformación plástica de las aleaciones de Mg está gobernada por una combinación de mecanismos de deformación característicos de la estructura cristalina hexagonal, que incluye el deslizamiento cristalográfico en planos basales, prismáticos y piramidales, así como el maclado. Las aleaciones de Mg de forja presentan texturas fuertes y por tanto los mecanismos de deformación activos dependen de la orientación de la carga aplicada. En este trabajo se ha desarrollado un modelo de plasticidad cristalina por elementos finitos con el objetivo de entender el comportamiento macro- y micromecánico de la aleación de Mg laminada AZ31 (Mg-3wt.%Al-1wt.%Zn). Este modelo, que incorpora el maclado y tiene en cuenta el endurecimiento por deformación debido a las interacciones dislocación-dislocación, dislocación-macla y macla-macla, predice exitosamente las actividades de los distintos mecanismos de deformación y la evolución de la textura con la deformación. Además, se ha llevado a cabo un estudio que combina difracción de electrones retrodispersados en tres dimensiones y modelización para investigar el efecto de los límites de grano en la propagación del maclado en el mismo material. Ambos, experimentos y simulaciones, confirman que el ángulo de desorientación tiene una influencia decisiva en la propagación del maclado. Se ha observado que los efectos no-Schmid, esto es, eventos de deformación plástica que no cumplen la ley de Schmid con respecto a la carga aplicada, no tienen lugar en la vecindad de los límites de baja desorientación y se hacen más frecuentes a medida que la desorientación aumenta. Esta investigación también prueba que la morfología de las maclas está altamente influenciada por su factor de Schmid. Es conocido que los procesos de colada suelen dar lugar a la formación de microestructuras con una microporosidad elevada, lo cuál afecta negativamente a sus propiedades mecánicas. La aplicación de presión hidrostática después de la colada puede reducir la porosidad y mejorar las propiedades aunque es poco conocido su efecto en el tamaño y morfología de los poros. En este trabajo se ha utilizado un enfoque mixto experimentalcomputacional, basado en tomografía de rayos X, análisis de imagen y análisis por elementos finitos, para la determinación de la distribución tridimensional (3D) de la porosidad y de la evolución de ésta con la presión hidrostática en la aleación de Mg AZ91 (Mg- 9wt.%Al-1wt.%Zn) colada por inyección a alta presión. La distribución real de los poros en 3D obtenida por tomografía se utilizó como input para las simulaciones por elementos finitos. Los resultados revelan que la aplicación de presión tiene una influencia significativa tanto en el cambio de volumen como en el cambio de forma de los poros que han sido cuantificados con precisión. Se ha observado que la reducción del tamaño de éstos está íntimamente ligada con su volumen inicial. En conclusión, el modelo de plasticidad cristalina propuesto en este trabajo describe con éxito los mecanismos intrínsecos de la deformación de las aleaciones de Mg a escalas meso- y microscópica. Más especificamente, es capaz de capturar las activadades del deslizamiento cristalográfico y maclado, sus interacciones, así como los efectos en la porosidad derivados de los procesos de colada. ---ABSTRACT--- The last few years have seen a growing effort to reduce CO2 emissions and their negative environmental impact. In the transport industry more specifically, vehicle weight reduction appears as the most straightforward option to achieve this objective. To this end, Mg alloys constitute a significant weight saving material alternative. Many efforts have been devoted over the last decade to understand the main mechanisms governing the plasticity of these materials and, despite being already widely used, high pressure die-casting and wrought Mg alloys are still the subject of intense research campaigns. Developing models that can contemplate the complexity inherent to the deformation of Mg alloys is now timely. This PhD thesis constitutes an attempt to better understand the relationship between the microstructure and the mechanical behavior of Mg alloys, as it will result in the design of polycrystalline models that successfully predict macro- and microscopic properties. Plastic deformation of Mg alloys is driven by a combination of deformation mechanisms specific to their hexagonal crystal structure, namely, basal, prismatic and pyramidal dislocation slip as well as twinning. Wrought Mg alloys present strong textures and thus specific deformation mechanisms are preferentially activated depending on the orientation of the applied load. In this work a crystal plasticity finite element model has been developed in order to understand the macro- and micromechanical behavior of a rolled Mg AZ31 alloy (Mg-3wt.%Al-1wt.%Zn). The model includes twinning and accounts for slip-slip, slip-twin and twin-twin hardening interactions. Upon calibration and validation against experiments, the model successfully predicts the activity of the various deformation mechanisms and the evolution of the texture at different deformation stages. Furthermore, a combined three-dimensional electron backscatter diffraction and modeling approach has been adopted to investigate the effect of grain boundaries on twin propagation in the same material. Both experiments and simulations confirm that the misorientation angle has a critical influence on twin propagation. Non-Schmid effects, i.e. plastic deformation events that do not comply with the Schmid law with respect to the applied stress, are absent in the vicinity of low misorientation boundaries and become more abundant as misorientation angle increases. This research also proves that twin morphology is highly influenced by the Schmid factor. Finally, casting processes usually lead to the formation of significant amounts of gas and shrinkage microporosity, which adversely affect the mechanical properties. The application of hydrostatic pressure after casting can reduce the porosity and improve the properties but little is known about the effects on the casting’s pores size and morphology. In this work, an experimental-computational approach based on X-ray computed tomography, image analysis and finite element analysis is utilized for the determination of the 3D porosity distribution and its evolution with hydrostatic pressure in a high pressure diecast Mg AZ91 alloy (Mg-9wt.%Al-1wt.%Zn). The real 3D pore distribution obtained by tomography is used as input for the finite element simulations using an isotropic hardening law. The model is calibrated and validated against experimental stress-strain curves. The results reveal that the pressure treatment has a significant influence both on the volume and shape changes of individuals pores, which have been precisely quantified, and which are found to be related to the initial pore volume. In conclusion, the crystal plasticity model proposed in this work successfully describes the intrinsic deformation mechanisms of Mg alloys both at the mesoscale and the microscale. More specifically, it can capture slip and twin activities, their interactions, as well as the potential porosity effects arising from casting processes.
Resumo:
Esta comunicación parte de la base de que en nuestro tiempo la idea ambigua del límite ha llegado a ser uno de los paradigmas más complejos que podemos afrontar no sólo en arquitectura sino también en la sociedad y la cultura.
Resumo:
Nagele es un asentamiento urbano situado en el Noordoostpolder, territorio neerlandés ganado al mar. Fue diseñado por arquitectos de los grupos De 8 en Opbouw entre los que destacaron Rietveld, Van Eesteren, Van Eyck, Bakema, Stam y Ruys. El proyecto se desarrolló entre 1947 y 1956, un periodo de tiempo con formas de proyectar muy ricas en interpretaciones. Los arquitectos pusieron en crisis los planteamientos historicistas de las nuevas poblaciones de los pólderes. Propusieron un nuevo prototipo, una morfología compacta y concéntrica que transmitiría igualdad a una comunidad agrícola, entendida como una sociedad urbana del siglo XX. La administración apoyó la propuesta que convertiría el proyecto en un arriesgado reto por su falta de antecedentes. La vigencia de las formulaciones permanece hoy en día en la ciudad construida, aunque con alteraciones. En los dibujos del proceso se encuentran los principales enunciados teóricos que este trabajo pretende descubrir. El trabajo aborda aspectos no suficientemente explorados, como su relación con el pólder, la evolución de las estrategias proyectivas, la ordenación paisajista y los elementos urbanos. El Noordoostpolder es la culminación de una serie de experiencias multidisciplinares en el reclamo de tierras a gran escala. Se estudia su estructura urbana policéntrica, la parcelación agrícola que origina el proyecto urbano y la vinculación de la vegetación con la infraestructura, proporcionando orientación, protección climática y escala humana, conceptos que impregnan las estrategias del proyecto urbano. La primera fase de la ordenación configuró áreas monofuncionales que respondían a cada una de las cuatro necesidades básicas del método científico de la ciudad higienista. El acontecimiento que marcó el final de la primera fase fue su presentación en el séptimo CIAM de 1949, cuyo título fue Aplicación de la Carta de Atenas. El programa residencial se dividió en clusters organizados en torno a una pradera vecinal central, vinculándose el orden vecinal, urbano y territorial. La segunda fase fue un catalizador de nuevos planteamientos. El proyecto se transformó en un In-between Realm, un escenario teórico donde coexisten fenómenos tradicionalmente antagónicos que Van Eyck denominó Twin Phenomena, convirtiéndose la ciudad en una réplica formal de la ambivalencia de la mente humana. La indefinición espacial no programada en la propuesta anterior se transformó en un conjunto de espacios urbanos, con límites y dimensiones adaptados a la escala humana. El proyecto es anterior a la obra escrita de Van Eyck por lo que estimuló sus enunciados teóricos. Unas ideas también reconocidas en los tres CIAM posteriores en los que también se expuso el proyecto. El diseño paisajista se integra en el proyecto urbano desde sus orígenes. El límite se compone de una barrera boscosa que protege climáticamente, proporciona escala humana y control visual frente a las llanuras infinitas del pólder. Van Eyck sintetizó el proyecto como una habitación verde sin techo, afirmación que dilucida su equivalencia con el de un interior doméstico. Exteriormente la ciudad se convierte en una unidad autónoma del territorio. Interiormente, un sistema jerarquizado de vegetación vinculado a la arquitectura y la infraestructura constituye espacios urbanos de diferentes escalas. La propuesta fue transformada por Boer y Ruys en un nuevo espacio urbano único, no asimilando los conceptos anteriores. El proyecto y construcción de los primeros elementos urbanos consistió en un reparto de tareas a De 8 en Opbouw, hecho que estimula estudiar su relación con el proyecto urbano. La estructura policéntrica organiza las aulas de las escuelas de Van Eyck, las diferentes áreas confesionales del cementerio de Ruys y las unidades residenciales, diseñadas por Stam, Rietveld y Stam-Besse. Los Twin Phenomena alcanzan un acuerdo en el corredor comercial, diseñado por Bakema y Van der Broek. La generación de espacios dentro de otros aparece también en el cementerio, a través de una nueva barrera boscosa y en el sistema de pliegues del muro que configura la iglesia de Bakema y Van der Broek. El proyecto se vincula a un planteamiento holístico, mediante el que el diseño de cada uno de sus elementos tiene en cuenta las estrategias proyectivas del todo del cual forma parte, convirtiéndose, al igual que las obras de De Stijl, en parte de una composición infinita que acerca arte y diseño en la vida cotidiana de la sociedad. La diversidad generacional e ideológica de estos arquitectos convirtió el proyecto en un tablero de juego sobre el que se aplicaron diferentes formas de proyectar la ciudad, ubicando a Nagele en un punto de inflexión del Movimiento Moderno. ABSTRACT The research focuses on the Nagele project, a Dutch urban settlement located in the Noordoostpolder, a territory which was entirely reclaimed from the IJsselmeer lake. It was designed by a group of architects from the De 8 and Opbouw teams, the leading protagonists being Rietveld, Van Eesteren, Van Eyck, Bakema, Stam y Ruys. It was designed from 1947 to 1956, a fruitful period in urban planning. These architects questioned the traditionalist urban design applied to the new populations in the IJsselmeer polders. Facing their principles, the work group proposed a new prototype; a compact and concentric urban pattern to foster equality in a new community of farm labourers, which was recognized by the architects as a twentieth century urban society. The government supported their new proposals. The lack of implementation of the innovatory conceptual statements subjected the project into a high-risk challenge. However, in spite of these difficulties, the basic concepts remain though partially transformed, in the actual city. The project drawings reflect the principle concepts that this work aims to discover. Some approaches that have not been sufficiently studied are tackled in this thesis. Firstly, the project´s relationship with the polder. Secondly, the evolution of projective strategies during the period of urban planning, the landscape design and the design of urban elements. The Noordoostpolder is the culmination of a series of multi-disciplinary experiences in large scale land reclamation, whose polycentric urban structure and agricultural subdivision provide the framework of Nagele. Linking the vegetation to infrastructure fostered orientation, climate protection and human scale; strategies which were repeated, though on a smaller scale, in the actual city. The first phase of the project was composed of mono-functional urban areas which responded to each of the four basic human needs indicated by the scientific method of the functional city. The presentation of the project at the seventh CIAM in 1949 was the event which marked the end of the first phase of the planning. This congress was entitled Implementation of the Athens Charter. The residential program was divided into housing clusters surrounding a central prairie, a pattern which was related to its urban and territorial whole. The second phase of the plan was subjected to a new theoretical approach. The urban planning became an In-between Realm, a theoretical scenario where traditionally antagonistic concepts coexist. Van Eyck named these concepts Twin Phenomena. The city thus conceived of as a counterform of the ambivalence of the human mind where spatial indefinition in the previous proposals was transformed into a Bunch of Places with defined boundaries and dimensions, all of which reflecting human scale. The landscape design was integrated into the urban project from its inception. The limits consist of a green wind-barrier which not only provides climate protection but also provides human scale and visual control towards the unlimited plains of the polder. Van Eyck summarised the project as a green room without a roof. This statement elucidates its equivalence to a domestic interior. Outwardly, the city becomes an autonomous unit on the territory. Inwardly a hierarchical vegetation system is linked to architecture and infrastructure. Together, they configure different scales of urban spaces. The proposal was transformed by Boer and Ruys into a unique urban space without assimilating Van Eyck´s concepts. The study of the Nagele landscape project of Nagele and the writings of Van Eyck verify the fact that many of his theoretical foundations (In-between Realm, Twin Phenomena, Bunch of Places, Right Scale) can be applied not only to architecture and city but also to landscape design. The application of these principles led the Nagele project to become a counterform of Van Eyck´s thinking. The design and construction of the first urban elements involved a distribution of tasks to De 8 en Opbouw, which stimulated their relationship with the urban project. The polycentric structure organised the school classrooms outlined by Van Eyck, the different areas of the cemetery planned by Ruys and the housing clusters designed by Stam, Rietveld and Stam-Besse. The Twin Phenomena concept can be applied in Van der Broek´s shopping corridor. The concept space within another space is also implemented in the cemetery surrounded by a new green barrier, and in the church built by Van der Broek and Bakema, whose spaces are configured by a folding wall. The project takes a holistic approach, which considers the design of each element within the strategies of the whole, where they become parts of an infinite composition, as in the art works of De Stijl fostering art and design to ordinary people´s daily lives. The generational and ideological diversity of these architects turned the project into a game board on which different ways of planning the city were played, obtaining Nagele the distinction of being a turning point of Modernism.