19 resultados para Turbulent Shear Flows
em Universidad Politécnica de Madrid
Resumo:
In this work, various turbulent solutions of the two-dimensional (2D) and three-dimensional compressible Reynolds averaged Navier?Stokes equations are analyzed using global stability theory. This analysis is motivated by the onset of flow unsteadiness (Hopf bifurcation) for transonic buffet conditions where moderately high Reynolds numbers and compressible effects must be considered. The buffet phenomenon involves a complex interaction between the separated flow and a shock wave. The efficient numerical methodology presented in this paper predicts the critical parameters, namely, the angle of attack and Mach and Reynolds numbers beyond which the onset of flow unsteadiness appears. The geometry, a NACA0012 profile, and flow parameters selected reproduce situations of practical interest for aeronautical applications. The numerical computation is performed in three steps. First, a steady baseflow solution is obtained; second, the Jacobian matrix for the RANS equations based on a finite volume discretization is computed; and finally, the generalized eigenvalue problem is derived when the baseflow is linearly perturbed. The methodology is validated predicting the 2D Hopf bifurcation for a circular cylinder under laminar flow condition. This benchmark shows good agreement with the previous published computations and experimental data. In the transonic buffet case, the baseflow is computed using the Spalart?Allmaras turbulence model and represents a mean flow where the high frequency content and length scales of the order of the shear-layer thickness have been averaged. The lower frequency content is assumed to be decoupled from the high frequencies, thus allowing a stability analysis to be performed on the low frequency range. In addition, results of the corresponding adjoint problem and the sensitivity map are provided for the first time for the buffet problem. Finally, an extruded three-dimensional geometry of the NACA0012 airfoil, where all velocity components are considered, was also analyzed as a Triglobal stability case, and the outcoming results were compared to the previous 2D limited model, confirming that the buffet onset is well detected.
Resumo:
La aparición de inestabilidades en un flujo es un problema importante que puede afectar a algunas aplicaciones aerodinámicas. De hecho existen diferentes tipos de fenómenos no-estacionarios que actualmente son tema de investigación; casos como la separación a altos ángulos de ataque o el buffet transónico son dos ejemplos de cierta relevancia. El análisis de estabilidad global permite identificar la aparición de dichas condiciones inestables, proporcionando información importante sobre la región donde la inestabilidad es dominante y sobre la frecuencia del fenómeno inestable. La metodología empleada es capaz de calcular un flujo base promediado mediante una discretización con volúmenes finitos y posteriormente la solución de un problema de autovalores asociado a la linealización que aparece al perturbar el flujo base. El cálculo numérico se puede dividir en tres pasos: primero se calcula una solución estacionaria para las ecuaciones RANS, luego se extrae la matriz del Jacobiano que representa el problema linealizado y finalmente se deriva y se resuelve el problema de autovalores generalizado mediante el método iterativo de Arnoldi. Como primer caso de validación, la técnica descrita ha sido aplicada a un cilindro circular en condiciones laminares para detectar el principio de las oscilaciones de los vórtices de von Karman, y se han comparado los resultados con experimentos y cálculos anteriores. La parte más importante del estudio se centra en el análisis de flujos compresibles en régimen turbulento. La predicción de la aparición y la progresión de flujo separado a altos ángulos de ataque se han estudiado en el perfil NACA0012 en condiciones tanto subsónicas como supersónicas y en una sección del ala del A310 en condiciones de despegue. Para todas las geometrías analizadas, se ha podido observar que la separación gradual genera la aparición de un modo inestable específico para altos ángulos de ataque siempre mayores que el ángulo asociado al máximo coeficiente de sustentación. Además, se ha estudiado el problema adjunto para obtener información sobre la zona donde una fuerza externa provoca el máximo cambio en el campo fluido. El estudio se ha completado calculando el mapa de sensibilidad estructural y localizando el centro de la inestabilidad. En el presente trabajo de tesis se ha analizado otro importante fenómeno: el buffet transónico. En condiciones transónicas, la interacción entre la onda de choque y la capa límite genera una oscilación de la posición de la onda de choque y, por consiguiente, de las fuerzas aerodinámicas. El conocimiento de las condiciones críticas y su origen puede ayudar a evitar la oscilación causada por estas fuerzas. Las condiciones para las cuales comienza la inestabilidad han sido calculadas y comparadas con trabajos anteriores. Por otra parte, los resultados del correspondiente problema adjunto y el mapa de sensibilidad se han obtenido por primera vez para el buffet, indicando la región del dominio que sera necesario modificar para crear el mayor cambio en las propiedades del campo fluido. Dado el gran consumo de memoria requerido para los casos 3D, se ha realizado un estudio sobre la reducción del domino con la finalidad de reducirlo a la región donde está localizada la inestabilidad. La eficacia de dicha reducción de dominio ha sido evaluada investigando el cambio en la dimensión de la matriz del Jacobiano, no resultando muy eficiente en términos del consumo de memoria. Dado que el buffet es un problema en general tridimensional, el análisis TriGlobal de una geometría 3D podría considerarse el auténtico reto futuro. Como aproximación al problema, un primer estudio se ha realizado empleando una geometría tridimensional extruida del NACA00f2. El cálculo del flujo 3D y, por primera vez en casos tridimensionales compresibles y turbulentos, el análisis de estabilidad TriGlobal, se han llevado a cabo. La comparación de los resultados obtenidos con los resultados del anterior modelo 2D, ha permitido, primero, verificar la exactitud del cálculo 2D realizado anteriormente y también ha proporcionado una estimación del consumo de memoria requerido para el caso 3D. ABSTRACT Flow unsteadiness is an important problem in aerodynamic applications. In fact, there are several types of unsteady phenomena that are still at the cutting edge of research in the field; separation at high angles of attack and transonic buffet are two important examples. Global Stability Analysis can identify the unstable onset conditions, providing important information about the instability location in the domain and the frequency of the unstable phenomenon. The methodology computes a base flow averaged state based on a finite volume discretization and a solution for a generalized eigenvalue problem corresponding to the perturbed linearized equations. The numerical computation is then performed in three steps: first, a steady solution for the RANS equation is computed; second, the Jacobian matrix that represents the linearized problem is obtained; and finally, the generalized eigenvalue problem is derived and solved with an Arnoldi iterative method. As a first validation test, the technique has been applied on a laminar circular cylinder in order to detect the von Karman vortex shedding onset, comparing the results with experiments and with previous calculations. The main part of the study focusses on turbulent and compressible cases. The prediction of the origin and progression of separated flows at high angles of attack has been studied on the NACA0012 airfoil at subsonic and transonic conditions and for the A310 airfoil in take-off configuration. For all the analyzed geometries, it has been found that gradual separation generates the appearance of one specific unstable mode for angles of attack always greater than the ones related to the maximum lift coefficient. In addition, the adjoint problem has been studied to suggest the location of an external force that results in the largest change to the flow field. From the direct and the adjoint analysis the structural sensitivity map has been computed and the core of the instability has been located. The other important phenomenon analyzed in this work is the transonic buffet. In transonic conditions, the interaction between the shock wave and the boundary layer leads to an oscillation of the shock location and, consequently, of the aerodynamic forces. Knowing the critical operational conditions and its origin can be helpful in preventing such fluctuating forces. The instability onset has then been computed and compared with the literature. Moreover, results of the corresponding adjoint problem and a sensitivity map have been provided for the first time for the buffet problem, indicating the region that must be modified to create the biggest change in flow field properties. Because of the large memory consumption required when a 3D case is approached, a domain reduction study has been carried out with the aim of limiting the domain size to the region where the instability is located. The effectiveness of the domain reduction has been evaluated by investigating the change in the Jacobian matrix size, not being very efficient in terms of memory consumption. Since buffet is a three-dimensional problem, TriGlobal stability analysis can be seen as a future challenge. To approximate the problem, a first study has been carried out on an extruded three-dimensional geometry of the NACA0012 airfoil. The 3D flow computation and the TriGlobal stability analysis have been performed for the first time on a compressible and turbulent 3D case. The results have been compared with a 2D model, confirming that the buffet onset evaluated in the 2D case is well detected. Moreover, the computation has given an indication about the memory consumption for a 3D case.
Resumo:
Statistically stationary and homogeneous shear turbulence (SS-HST) is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, long-term simulations of HST are “minimal” in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx ≳ 2Lz, Ly ≳ Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx ≳ 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wall-bounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ∼20S−1, and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general.
Resumo:
Esta tesis estudia las similitudes y diferencias entre los flujos turbulentos de pared de tipo externo e interno, en régimen incompresible, y a números de Reynolds moderada¬mente altos. Para ello consideramos tanto simulaciones numéricas como experimentos de capas límites con gradiente de presiones nulo y de flujos de canal, ambos a números de Reynolds en el rango δ+ ~ 500 - 2000. Estos flujos de cortadura son objeto de numerosas investigaciones debido a la gran importancia que tienen tanto a nivel tecnológico como a nivel de física fundamental. No obstante, todavía existen muchos interrogantes sobre aspectos básicos tales como la universalidad de los perfiles medios y de fluctuación de las velocidades o de la presión, tanto en la zona cercana a la pared como en la zona logarítmica, el escalado y el efecto del número de Reynolds, o las diferencias entre los flujos internos y externos en la zona exterior. En éste estudio hemos utilizado simulaciones numéricas ya existentes de canales y capas límites a números de Reynolds δ+ ~ 2000 y δ+ ~ 700, respectivamente. Para poder comparar ambos flujos a igual número de Reynolds hemos realizado una nueva simulación directa de capa límite en el rango δ+ ~ 1000-2000. Los resultados de la misma son presentados y analizados en detalle. Los datos sin postprocesar y las estadísticas ya postprocesadas están públicamente disponibles en nuestro sitio web.162 El análisis de las estadísticas usando un único punto confirma la existencia de perfiles logarítmicos para las fluctuaciones de la velocidad transversal w'2+ y de la presión p'2+ en ambos tipos de flujos, pero no para la velocidad normal v'2+ o la velocidad longitudinal u'2+. Para aceptar o rechazar la existencia de un rango logarítmico en u'2+ se requieren números de Reynolds más altos que los considerados en éste trabajo. Una de las conse¬cuencias más importantes de poseer tales perfiles es que el valor máximo de la intensidad, que se alcanza cerca de la pared, depende explícitamente del número de Reynolds. Esto ha sido confirmado tras analizar un gran número de datos experimentales y numéricos, cor¬roborando que el máximo de u'2+, p/2+, y w'2+ aumenta proporcionalmente con el log(δ+). Por otro lado, éste máximo es más intenso en los flujos externos que en los internos. La máxima diferencia ocurre en torno a y/δ ~ 0.3-0.5, siendo esta altura prácticamente independiente del número de Reynolds considerado. Estas diferencias se originan como consecuencia del carácter intermitente de las capas límites, que es inexistente en los flujos internos. La estructura de las fluctuaciones de velocidad y de presión, junto con la de los esfuer¬zos de Reynolds, se han investigado por medio de correlaciones espaciales tridimensionales considerando dos puntos de medida. Hemos obtenido que el tamaño de las mismas es gen¬eralmente mayor en canales que en capas límites, especialmente en el caso de la correlación longitudinal Cuu en la dirección del flujo. Para esta correlación se demuestra que las es¬tructuras débilmente correladas presentan longitudes de hasta 0(75), en el caso de capas límites, y de hasta 0(185) en el caso de canales. Estas longitudes se obtienen respecti-vamente en la zona logarítmica y en la zona exterior. Las longitudes correspondientes en la dirección transversal son significativamente menores en ambos flujos, 0(5 — 25). La organización espacial de las correlaciones es compatible con la de una pareja de rollos casi paralelos con dimensiones que escalan en unidades exteriores. Esta organización se mantiene al menos hasta y ~ 0.65, altura a la cual las capas límites comienzan a organi¬zarse en rollos transversales. Este comportamiento es sin embargo más débil en canales, pudiéndose observar parcialmente a partir de y ~ 0.85. Para estudiar si estas estructuras están onduladas a lo largo de la dirección transver¬sal, hemos calculado las correlaciones condicionadas a eventos intensos de la velocidad transversal w'. Estas correlaciones revelan que la ondulación de la velocidad longitudinal aumenta conforme nos alejamos de la pared, sugiriendo que las estructuras están más alineadas en la zona cercana a la pared que en la zona lejana a ella. El por qué de esta ondulación se encuentra posiblemente en la configuración a lo largo de diagonales que presenta w'. Estas estructuras no sólo están onduladas, sino que también están inclinadas respecto a la pared con ángulos que dependen de la variable considerada, de la altura, y de el contorno de correlación seleccionado. Por encima de la zona tampón e independien¬temente del número de Reynolds y tipo de flujo, Cuu presenta una inclinación máxima de unos 10°, las correlaciones Cvv y Cm son esencialmente verticales, y Cww está inclinada a unos 35°. Summary This thesis studies the similitudes and differences between external and internal in¬compressible wall-bounded turbulent flows at moderately-high Reynolds numbers. We consider numerical and experimental zero-pressure-gradient boundary layers and chan¬nels in the range of δ+ ~ 500 — 2000. These shear flows are subjects of intensive research because of their technological importance and fundamental physical interest. However, there are still open questions regarding basic aspects such as the universality of the mean and fluctuating velocity and pressure profiles at the near-wall and logarithmic regions, their scaling and the effect of the Reynolds numbers, or the differences between internal and external flows at the outer layer, to name but a few. For this study, we made use of available direct numerical simulations of channel and boundary layers reaching δ+ ~ 2000 and δ+ ~ 700, respectively. To fill the gap in the Reynolds number, a new boundary layer simulation in the range δ+ ~ 1000-2000 is presented and discussed. The original raw data and the post-processed statistics are publicly available on our website.162 The analysis of the one-point statistic confirms the existence of logarithmic profiles for the spanwise w'2+ and pressure p'2+ fluctuations for both type of flows, but not for the wall-normal v'2+ or the streamwise u'2+ velocities. To accept or reject the existence of a logarithmic range in u'2+ requires higher Reynolds numbers than the ones considered in this work. An important consequence of having such profiles is that the maximum value of the intensities, reached near the wall, depends on the Reynolds number. This was confirmed after surveying a wide number of experimental and numerical datasets, corrob¬orating that the maximum of ul2+, p'2+, and w'2+ increases proportionally to log(δ+). On the other hand, that maximum is more intense in external flows than in internal ones, differing the most around y/δ ~ 0.3-0.5, and essentially independent of the Reynolds number. We discuss that those differences are originated as a consequence of the inter¬mittent character of boundary layers that is absent in internal flows. The structure of the velocity and pressure fluctuations, together with those of the Reynolds shear stress, were investigated using three-dimensional two-point spatial correlations. We find that the correlations extend over longer distances in channels than in boundary layers, especially in the case of the streamwise correlation Cuu in the flow direc-tion. For weakly correlated structures, the maximum streamwise length of Cuu is O(78) for boundary layers and O(188) for channels, attained at the logarithmic and outer regions respectively. The corresponding lengths for the transverse velocities and for the pressure are shorter, 0(8 — 28), and of the same order for both flows. The spatial organization of the velocity correlations is shown to be consistent with a pair of quasi-streamwise rollers that scales in outer units. That organization is observed until y ~ 0.68, from which boundary layers start to organize into spanwise rollers. This effect is weaker in channels, and it appears at y ~ 0.88. We present correlations conditioned to intense events of the transversal velocity, w', to study if these structures meander along the spanwise direction. The results indicate that the streamwise velocity streaks increase their meandering proportionally to the distance to the wall, suggesting that the structures are more aligned close to the wall than far from it. The reason behind this meandering is probably due to the characteristic organization along diagonals of w'. These structures not only meander along the spanwise direction, but they are also inclined to the wall at angles that depend on the distance from the wall, on the variable being considered, and on the correlation level used to define them. Above the buffer layer and independent of the Reynolds numbers and type of flow, the maximum inclination of Cuu is about 10°, Cvv and Cpp are roughly vertical, and Cww is inclined by 35°.
Resumo:
La región cerca de la pared de flujos turbulentos de pared ya está bien conocido debido a su bajo número de Reynolds local y la separación escala estrecha. La región lejos de la pared (capa externa) no es tan interesante tampoco, ya que las estadísticas allí se escalan bien por las unidades exteriores. La región intermedia (capa logarítmica), sin embargo, ha estado recibiendo cada vez más atención debido a su propiedad auto-similares. Además, de acuerdo a Flores et al. (2007) y Flores & Jiménez (2010), la capa logarítmica es más o menos independiente de otras capas, lo que implica que podría ser inspeccionado mediante el aislamiento de otras dos capas, lo que reduciría significativamente los costes computacionales para la simulación de flujos turbulentos de pared. Algunos intentos se trataron después por Mizuno & Jiménez (2013), quien simulan la capa logarítmica sin la región cerca de la pared con estadísticas obtenidas de acuerdo razonablemente bien con los de las simulaciones completas. Lo que más, la capa logarítmica podría ser imitado por otra turbulencia sencillo de cizallamiento de motor. Por ejemplo, Pumir (1996) encontró que la turbulencia de cizallamiento homogéneo estadísticamente estacionario (SS-HST) también irrumpe, de una manera muy similar al proceso de auto-sostenible en flujos turbulentos de pared. Según los consideraciones arriba, esta tesis trata de desvelar en qué medida es la capa logarítmica de canales similares a la turbulencia de cizalla más sencillo, SS-HST, mediante la comparación de ambos cinemática y la dinámica de las estructuras coherentes en los dos flujos. Resultados sobre el canal se muestran mediante Lozano-Durán et al. (2012) y Lozano-Durán & Jiménez (2014b). La hoja de ruta de esta tarea se divide en tres etapas. En primer lugar, SS-HST es investigada por medio de un código nuevo de simulación numérica directa, espectral en las dos direcciones horizontales y compacto-diferencias finitas en la dirección de la cizalla. Sin utiliza remallado para imponer la condición de borde cortante periódica. La influencia de la geometría de la caja computacional se explora. Ya que el HST no tiene ninguna longitud característica externa y tiende a llenar el dominio computacional, las simulaciopnes a largo plazo del HST son ’mínimos’ en el sentido de que contiene sólo unas pocas estructuras media a gran escala. Se ha encontrado que el límite principal es el ancho de la caja de la envergadura, Lz, que establece las escalas de longitud y velocidad de la turbulencia, y que las otras dos dimensiones de la caja debe ser suficientemente grande (Lx > 2LZ, Ly > Lz) para evitar que otras direcciones estando limitado también. También se encontró que las cajas de gran longitud, Lx > 2Ly, par con el paso del tiempo la condición de borde cortante periódica, y desarrollar fuertes ráfagas linealizadas no físicos. Dentro de estos límites, el flujo muestra similitudes y diferencias interesantes con otros flujos de cizalla, y, en particular, con la capa logarítmica de flujos turbulentos de pared. Ellos son exploradas con cierto detalle. Incluyen un proceso autosostenido de rayas a gran escala y con una explosión cuasi-periódica. La escala de tiempo de ruptura es de aproximadamente universales, ~20S~l(S es la velocidad de cizallamiento media), y la disponibilidad de dos sistemas de ruptura diferentes permite el crecimiento de las ráfagas a estar relacionado con algo de confianza a la cizalladura de turbulencia inicialmente isotrópico. Se concluye que la SS-HST, llevado a cabo dentro de los parámetros de cílculo apropiados, es un sistema muy prometedor para estudiar la turbulencia de cizallamiento en general. En segundo lugar, las mismas estructuras coherentes como en los canales estudiados por Lozano-Durán et al. (2012), es decir, grupos de vórticidad (fuerte disipación) y Qs (fuerte tensión de Reynolds tangencial, -uv) tridimensionales, se estudia mediante simulación numérica directa de SS-HST con relaciones de aspecto de cuadro aceptables y número de Reynolds hasta Rex ~ 250 (basado en Taylor-microescala). Se discute la influencia de la intermitencia de umbral independiente del tiempo. Estas estructuras tienen alargamientos similares en la dirección sentido de la corriente a las familias separadas en los canales hasta que son de tamaño comparable a la caja. Sus dimensiones fractales, longitudes interior y exterior como una función del volumen concuerdan bien con sus homólogos de canales. El estudio sobre sus organizaciones espaciales encontró que Qs del mismo tipo están alineados aproximadamente en la dirección del vector de velocidad en el cuadrante al que pertenecen, mientras Qs de diferentes tipos están restringidos por el hecho de que no debe haber ningún choque de velocidad, lo que hace Q2s (eyecciones, u < 0,v > 0) y Q4s (sweeps, u > 0,v < 0) emparejado en la dirección de la envergadura. Esto se verifica mediante la inspección de estructuras de velocidad, otros cuadrantes como la uw y vw en SS-HST y las familias separadas en el canal. La alineación sentido de la corriente de Qs ligada a la pared con el mismo tipo en los canales se debe a la modulación de la pared. El campo de flujo medio condicionado a pares Q2-Q4 encontró que los grupos de vórticidad están en el medio de los dos, pero prefieren los dos cizalla capas alojamiento en la parte superior e inferior de Q2s y Q4s respectivamente, lo que hace que la vorticidad envergadura dentro de las grupos de vórticidad hace no cancele. La pared amplifica la diferencia entre los tamaños de baja- y alta-velocidad rayas asociados con parejas de Q2-Q4 se adjuntan como los pares alcanzan cerca de la pared, el cual es verificado por la correlación de la velocidad del sentido de la corriente condicionado a Q2s adjuntos y Q4s con diferentes alturas. Grupos de vórticidad en SS-HST asociados con Q2s o Q4s también están flanqueadas por un contador de rotación de los vórtices sentido de la corriente en la dirección de la envergadura como en el canal. La larga ’despertar’ cónica se origina a partir de los altos grupos de vórticidad ligada a la pared han encontrado los del Álamo et al. (2006) y Flores et al. (2007), que desaparece en SS-HST, sólo es cierto para altos grupos de vórticidad ligada a la pared asociados con Q2s pero no para aquellos asociados con Q4s, cuyo campo de flujo promedio es en realidad muy similar a la de SS-HST. En tercer lugar, las evoluciones temporales de Qs y grupos de vórticidad se estudian mediante el uso de la método inventado por Lozano-Durán & Jiménez (2014b). Las estructuras se clasifican en las ramas, que se organizan más en los gráficos. Ambas resoluciones espaciales y temporales se eligen para ser capaz de capturar el longitud y el tiempo de Kolmogorov puntual más probable en el momento más extrema. Debido al efecto caja mínima, sólo hay un gráfico principal consiste en casi todas las ramas, con su volumen y el número de estructuras instantáneo seguien la energía cinética y enstrofía intermitente. La vida de las ramas, lo que tiene más sentido para las ramas primarias, pierde su significado en el SS-HST debido a las aportaciones de ramas primarias al total de Reynolds estrés o enstrofía son casi insignificantes. Esto también es cierto en la capa exterior de los canales. En cambio, la vida de los gráficos en los canales se compara con el tiempo de ruptura en SS-HST. Grupos de vórticidad están asociados con casi el mismo cuadrante en términos de sus velocidades medias durante su tiempo de vida, especialmente para los relacionados con las eyecciones y sweeps. Al igual que en los canales, las eyecciones de SS-HST se mueven hacia arriba con una velocidad promedio vertical uT (velocidad de fricción) mientras que lo contrario es cierto para los barridos. Grupos de vórticidad, por otra parte, son casi inmóvil en la dirección vertical. En la dirección de sentido de la corriente, que están advección por la velocidad media local y por lo tanto deforman por la diferencia de velocidad media. Sweeps y eyecciones se mueven más rápido y más lento que la velocidad media, respectivamente, tanto por 1.5uT. Grupos de vórticidad se mueven con la misma velocidad que la velocidad media. Se verifica que las estructuras incoherentes cerca de la pared se debe a la pared en vez de pequeño tamaño. Los resultados sugieren fuertemente que las estructuras coherentes en canales no son especialmente asociado con la pared, o incluso con un perfil de cizalladura dado. ABSTRACT Since the wall-bounded turbulence was first recognized more than one century ago, its near wall region (buffer layer) has been studied extensively and becomes relatively well understood due to the low local Reynolds number and narrow scale separation. The region just above the buffer layer, i.e., the logarithmic layer, is receiving increasingly more attention nowadays due to its self-similar property. Flores et al. (20076) and Flores & Jim´enez (2010) show that the statistics of logarithmic layer is kind of independent of other layers, implying that it might be possible to study it separately, which would reduce significantly the computational costs for simulations of the logarithmic layer. Some attempts were tried later by Mizuno & Jimenez (2013), who simulated the logarithmic layer without the buffer layer with obtained statistics agree reasonably well with those of full simulations. Besides, the logarithmic layer might be mimicked by other simpler sheardriven turbulence. For example, Pumir (1996) found that the statistically-stationary homogeneous shear turbulence (SS-HST) also bursts, in a manner strikingly similar to the self-sustaining process in wall-bounded turbulence. Based on these considerations, this thesis tries to reveal to what extent is the logarithmic layer of channels similar to the simplest shear-driven turbulence, SS-HST, by comparing both kinematics and dynamics of coherent structures in the two flows. Results about the channel are shown by Lozano-Dur´an et al. (2012) and Lozano-Dur´an & Jim´enez (20146). The roadmap of this task is divided into three stages. First, SS-HST is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, longterm simulations of HST are ‘minimal’ in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx > 2LZ, Ly > Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx > 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wallbounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ~ 20S~l (S is the mean shear rate), and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general. Second, the same coherent structures as in channels studied by Lozano-Dur´an et al. (2012), namely three-dimensional vortex clusters (strong dissipation) and Qs (strong tangential Reynolds stress, -uv), are studied by direct numerical simulation of SS-HST with acceptable box aspect ratios and Reynolds number up to Rex ~ 250 (based on Taylor-microscale). The influence of the intermittency to time-independent threshold is discussed. These structures have similar elongations in the streamwise direction to detached families in channels until they are of comparable size to the box. Their fractal dimensions, inner and outer lengths as a function of volume agree well with their counterparts in channels. The study about their spatial organizations found that Qs of the same type are aligned roughly in the direction of the velocity vector in the quadrant they belong to, while Qs of different types are restricted by the fact that there should be no velocity clash, which makes Q2s (ejections, u < 0, v > 0) and Q4s (sweeps, u > 0, v < 0) paired in the spanwise direction. This is verified by inspecting velocity structures, other quadrants such as u-w and v-w in SS-HST and also detached families in the channel. The streamwise alignment of attached Qs with the same type in channels is due to the modulation of the wall. The average flow field conditioned to Q2-Q4 pairs found that vortex clusters are in the middle of the pair, but prefer to the two shear layers lodging at the top and bottom of Q2s and Q4s respectively, which makes the spanwise vorticity inside vortex clusters does not cancel. The wall amplifies the difference between the sizes of low- and high-speed streaks associated with attached Q2-Q4 pairs as the pairs reach closer to the wall, which is verified by the correlation of streamwise velocity conditioned to attached Q2s and Q4s with different heights. Vortex clusters in SS-HST associated with Q2s or Q4s are also flanked by a counter rotating streamwise vortices in the spanwise direction as in the channel. The long conical ‘wake’ originates from tall attached vortex clusters found by del A´ lamo et al. (2006) and Flores et al. (2007b), which disappears in SS-HST, is only true for tall attached vortices associated with Q2s but not for those associated with Q4s, whose averaged flow field is actually quite similar to that in SS-HST. Third, the temporal evolutions of Qs and vortex clusters are studied by using the method invented by Lozano-Dur´an & Jim´enez (2014b). Structures are sorted into branches, which are further organized into graphs. Both spatial and temporal resolutions are chosen to be able to capture the most probable pointwise Kolmogorov length and time at the most extreme moment. Due to the minimal box effect, there is only one main graph consist by almost all the branches, with its instantaneous volume and number of structures follow the intermittent kinetic energy and enstrophy. The lifetime of branches, which makes more sense for primary branches, loses its meaning in SS-HST because the contributions of primary branches to total Reynolds stress or enstrophy are almost negligible. This is also true in the outer layer of channels. Instead, the lifetime of graphs in channels are compared with the bursting time in SS-HST. Vortex clusters are associated with almost the same quadrant in terms of their mean velocities during their life time, especially for those related with ejections and sweeps. As in channels, ejections in SS-HST move upwards with an average vertical velocity uτ (friction velocity) while the opposite is true for sweeps. Vortex clusters, on the other hand, are almost still in the vertical direction. In the streamwise direction, they are advected by the local mean velocity and thus deformed by the mean velocity difference. Sweeps and ejections move faster and slower than the mean velocity respectively, both by 1.5uτ . Vortex clusters move with the same speed as the mean velocity. It is verified that the incoherent structures near the wall is due to the wall instead of small size. The results suggest that coherent structures in channels are not particularly associated with the wall, or even with a given shear profile.
Resumo:
In typical liquid-fueled burners the fuel is injected as a high-velocity liquid jet that breaks up to form the spray. The initial heating and vaporization of the liquid fuel rely on the relatively large temperatures of the sourrounding gas, which may include hot combustion products and preheated air. The heat exchange between the liquid and the gas phases is enhanced by droplet dispersion arising from the turbulent motion. Chemical reaction takes place once molecular mixing between the fuel vapor and the oxidizer has occurred in mixing layers separating the spray flow from the hot air stream. Since in most applications the injection velocities are much larger than the premixed-flame propagation velocity, combustion stabilization relies on autoignition of the fuel-oxygen mixture, with the combustion stand-off distance being controlled by the interaction of turbulent transport, droplet heating and vaporization, and gas-phase chemical reactions. In this study, conditions are identified under which analyses of laminar flamelets canshed light on aspects of turbulent spray ignition. This study extends earlier fundamental work by Liñan & Crespo (1976) on ignition in gaseous mixing layers to ignition of sprays. Studies of laminar mixing layers have been found to be instrumental in developing un-derstanding of turbulent combustion (Peters 2000), including the ignition of turbulent gaseous diffusion flames (Mastorakos 2009). For the spray problem at hand, the configuration selected, shown in Figure 1, involves a coflow mixing layer formed between a stream of hot air moving at velocity UA and a monodisperse spray moving at velocity USUA. The boundary-layer approximation will be used below to describe the resulting sl ender flow, which exhibits different igniting behaviors depending on the characteristics of t he fuel. In this approximation, consideration of the case U A = U S enables laminar ignition distances to be related to ignition times of unstrained spray flamelets, thereby pro viding quantitative information of direct applicability in regions of low scala r dissipation-rate in turbulent reactive flows (see the discussion in pp. 181–186 of Peters (2000)) . This report is organized as follows. Effects of droplet dispersion dynamics on ignition of sprays in turbulent mixing layers are discussed in Section 2. The formulation f or ignition in laminar mixing layers is outlined in Sections 3 and 4. The results are presented in Section 5. In Section 6, the mixture-fraction field and associated scalar dissipat ion rates for spray ignition are discussed. Finally, some brief conclusions are drawn in Section 7.
Resumo:
In this work, a combination of numerical methods applied to thermohydrodynamic lubrication problems with cavitation is presented. It should be emphasized the difficulty of the nonlinear mathematical coupled model involving a free boundary problem, but also the simplicity of the algorithms employed to solve it. So, finite element discretizations for the hydrodynamic and thermal equations combined with upwind techniques for the convection terms and duality methods for nonlinear features are proposed. Additionally, a model describing the movement of the shaft is provided. Considering the shaft as a rigid body this model will consist of an ODE system relating acceleration of the center of gravity and external and pressure loads. The numerical experiments of mechanical stability try to clarify the position of the neutral stability curve. Finally, a rotating machine for ship propulsion involving both axial and radial bearings operating with nonconventional lubricants (seawater to avoid environmental pollution) is analyzed by using laminar and turbulent inertial flows.
Resumo:
In a general situation a non-uniform velocity field gives rise to a shift of the otherwise straight acoustic pulse trajectory between the transmitter and receiver transducers of a sonic anemometer. The aim of this paper is to determine the effects of trajectory shifts on the velocity as measured by the sonic anemometer. This determination has been accomplished by developing a mathematical model of the measuring process carried out by sonic anemometers; a model which includes the non-straight trajectory effect. The problem is solved by small perturbation techniques, based on the relevant small parameter of the problem, the Mach number of the reference flow, M. As part of the solution, a general analytical expression for the deviations of the computed measured speed from the nominal speed has been obtained. The correction terms of both the transit time and of the measured speed are of M 2 order in rotational velocity field. The method has been applied to three simple, paradigmatic flows: one-directional horizontal and vertical shear flows, and mixed with a uniform horizontal flow.
Resumo:
Computer Fluid Dynamics tools have already become a valuable instrument for Naval Architects during the ship design process, thanks to their accuracy and the available computer power. Unfortunately, the development of RANSE codes, generally used when viscous effects play a major role in the flow, has not reached a mature stage, being the accuracy of the turbulence models and the free surface representation the most important sources of uncertainty. Another level of uncertainty is added when the simulations are carried out for unsteady flows, as those generally studied in seakeeping and maneuvering analysis and URANS equations solvers are used. Present work shows the applicability and the benefits derived from the use of new approaches for the turbulence modeling (Detached Eddy Simulation) and the free surface representation (Level Set) on the URANS equations solver CFDSHIP-Iowa. Compared to URANS, DES is expected to predict much broader frequency contents and behave better in flows where boundary layer separation plays a major role. Level Set methods are able to capture very complex free surface geometries, including breaking and overturning waves. The performance of these improvements is tested in set of fairly complex flows, generated by a Wigley hull at pure drift motion, with drift angle ranging from 10 to 60 degrees and at several Froude numbers to study the impact of its variation. Quantitative verification and validation are performed with the obtained results to guarantee their accuracy. The results show the capability of the CFDSHIP-Iowa code to carry out time-accurate simulations of complex flows of extreme unsteady ship maneuvers. The Level Set method is able to capture very complex geometries of the free surface and the use of DES in unsteady simulations highly improves the results obtained. Vortical structures and instabilities as a function of the drift angle and Fr are qualitatively identified. Overall analysis of the flow pattern shows a strong correlation between the vortical structures and free surface wave pattern. Karman-like vortex shedding is identified and the scaled St agrees well with the universal St value. Tip vortices are identified and the associated helical instabilities are analyzed. St using the hull length decreases with the increase of the distance along the vortex core (x), which is similar to results from other simulations. However, St scaled using distance along the vortex cores shows strong oscillations compared to almost constants for those previous simulations. The difference may be caused by the effect of the free-surface, grid resolution, and interaction between the tip vortex and other vortical structures, which needs further investigations. This study is exploratory in the sense that finer grids are desirable and experimental data is lacking for large α, especially for the local flow. More recently, high performance computational capability of CFDSHIP-Iowa V4 has been improved such that large scale computations are possible. DES for DTMB 5415 with bilge keels at α = 20º were conducted using three grids with 10M, 48M and 250M points. DES analysis for flows around KVLCC2 at α = 30º is analyzed using a 13M grid and compared with the results of DES on the 1.6M grid by. Both studies are consistent with what was concluded on grid resolution herein since dominant frequencies for shear-layer, Karman-like, horse-shoe and helical instabilities only show marginal variation on grid refinement. The penalties of using coarse grids are smaller frequency amplitude and less resolved TKE. Therefore finer grids should be used to improve V&V for resolving most of the active turbulent scales for all different Fr and α, which hopefully can be compared with additional EFD data for large α when it becomes available.
Resumo:
The dispersion of solid particles in the turbulent recirculation zones of sudden expansion pipes can be characterized by different Stokes numbers and mean drift parameter and its study is important because this kind of flows appears in many technological applications.
Resumo:
El objetivo de esta tesis es estudiar la dinámica de la capa logarítmica de flujos turbulentos de pared. En concreto, proponemos un nuevo modelo estructural utilizando diferentes tipos de estructuras coherentes: sweeps, eyecciones, grupos de vorticidad y streaks. La herramienta utilizada es la simulación numérica directa de canales turbulentos. Desde los primeros trabajos de Theodorsen (1952), las estructuras coherentes han jugado un papel fundamental para entender la organización y dinámica de los flujos turbulentos. A día de hoy, datos procedentes de simulaciones numéricas directas obtenidas en instantes no contiguos permiten estudiar las propiedades fundamentales de las estructuras coherentes tridimensionales desde un punto de vista estadístico. Sin embargo, la dinámica no puede ser entendida en detalle utilizando sólo instantes aislados en el tiempo, sino que es necesario seguir de forma continua las estructuras. Aunque existen algunos estudios sobre la evolución temporal de las estructuras más pequeñas a números de Reynolds moderados, por ejemplo Robinson (1991), todavía no se ha realizado un estudio completo a altos números de Reynolds y para todas las escalas presentes de la capa logarítmica. El objetivo de esta tesis es llevar a cabo dicho análisis. Los problemas más interesantes los encontramos en la región logarítmica, donde residen las cascadas de vorticidad, energía y momento. Existen varios modelos que intentan explicar la organización de los flujos turbulentos en dicha región. Uno de los más extendidos fue propuesto por Adrian et al. (2000) a través de observaciones experimentales y considerando como elemento fundamental paquetes de vórtices con forma de horquilla que actúan de forma cooperativa para generar rampas de bajo momento. Un modelo alternativo fué ideado por del Álamo & Jiménez (2006) utilizando datos numéricos. Basado también en grupos de vorticidad, planteaba un escenario mucho más desorganizado y con estructuras sin forma de horquilla. Aunque los dos modelos son cinemáticamente similares, no lo son desde el punto de vista dinámico, en concreto en lo que se refiere a la importancia que juega la pared en la creación y vida de las estructuras. Otro punto importante aún sin resolver se refiere al modelo de cascada turbulenta propuesto por Kolmogorov (1941b), y su relación con estructuras coherentes medibles en el flujo. Para dar respuesta a las preguntas anteriores, hemos desarrollado un nuevo método que permite seguir estructuras coherentes en el tiempo y lo hemos aplicado a simulaciones numéricas de canales turbulentos con números de Reynolds lo suficientemente altos como para tener un rango de escalas no trivial y con dominios computacionales lo suficientemente grandes como para representar de forma correcta la dinámica de la capa logarítmica. Nuestros esfuerzos se han desarrollado en cuatro pasos. En primer lugar, hemos realizado una campaña de simulaciones numéricas directas a diferentes números de Reynolds y tamaños de cajas para evaluar el efecto del dominio computacional en las estadísticas de primer orden y el espectro. A partir de los resultados obtenidos, hemos concluido que simulaciones con cajas de longitud 2vr y ancho vr veces la semi-altura del canal son lo suficientemente grandes para reproducir correctamente las interacciones entre estructuras coherentes de la capa logarítmica y el resto de escalas. Estas simulaciones son utilizadas como punto de partida en los siguientes análisis. En segundo lugar, las estructuras coherentes correspondientes a regiones con esfuerzos de Reynolds tangenciales intensos (Qs) en un canal turbulento han sido estudiadas extendiendo a tres dimensiones el análisis de cuadrantes, con especial énfasis en la capa logarítmica y la región exterior. Las estructuras coherentes han sido identificadas como regiones contiguas del espacio donde los esfuerzos de Reynolds tangenciales son más intensos que un cierto nivel. Los resultados muestran que los Qs separados de la pared están orientados de forma isótropa y su contribución neta al esfuerzo de Reynolds medio es nula. La mayor contribución la realiza una familia de estructuras de mayor tamaño y autosemejantes cuya parte inferior está muy cerca de la pared (ligada a la pared), con una geometría compleja y dimensión fractal « 2. Estas estructuras tienen una forma similar a una ‘esponja de placas’, en comparación con los grupos de vorticidad que tienen forma de ‘esponja de cuerdas’. Aunque el número de objetos decae al alejarnos de la pared, la fracción de esfuerzos de Reynolds que contienen es independiente de su altura, y gran parte reside en unas pocas estructuras que se extienden más allá del centro del canal, como en las grandes estructuras propuestas por otros autores. Las estructuras dominantes en la capa logarítmica son parejas de sweeps y eyecciones uno al lado del otro y con grupos de vorticidad asociados que comparten las dimensiones y esfuerzos con los remolinos ligados a la pared propuestos por Townsend. En tercer lugar, hemos estudiado la evolución temporal de Qs y grupos de vorticidad usando las simulaciones numéricas directas presentadas anteriormente hasta números de Reynolds ReT = 4200 (Reynolds de fricción). Las estructuras fueron identificadas siguiendo el proceso descrito en el párrafo anterior y después seguidas en el tiempo. A través de la interseción geométrica de estructuras pertenecientes a instantes de tiempo contiguos, hemos creado gratos de conexiones temporales entre todos los objetos y, a partir de ahí, definido ramas primarias y secundarias, de tal forma que cada rama representa la evolución temporal de una estructura coherente. Una vez que las evoluciones están adecuadamente organizadas, proporcionan toda la información necesaria para caracterizar la historia de las estructuras desde su nacimiento hasta su muerte. Los resultados muestran que las estructuras nacen a todas las distancias de la pared, pero con mayor probabilidad cerca de ella, donde la cortadura es más intensa. La mayoría mantienen tamaños pequeños y no viven mucho tiempo, sin embargo, existe una familia de estructuras que crecen lo suficiente como para ligarse a la pared y extenderse a lo largo de la capa logarítmica convirtiéndose en las estructuras observas anteriormente y descritas por Townsend. Estas estructuras son geométricamente autosemejantes con tiempos de vida proporcionales a su tamaño. La mayoría alcanzan tamaños por encima de la escala de Corrsin, y por ello, su dinámica está controlada por la cortadura media. Los resultados también muestran que las eyecciones se alejan de la pared con velocidad media uT (velocidad de fricción) y su base se liga a la pared muy rápidamente al inicio de sus vidas. Por el contrario, los sweeps se mueven hacia la pared con velocidad -uT y se ligan a ella más tarde. En ambos casos, los objetos permanecen ligados a la pared durante 2/3 de sus vidas. En la dirección de la corriente, las estructuras se desplazan a velocidades cercanas a la convección media del flujo y son deformadas por la cortadura. Finalmente, hemos interpretado la cascada turbulenta, no sólo como una forma conceptual de organizar el flujo, sino como un proceso físico en el cual las estructuras coherentes se unen y se rompen. El volumen de una estructura cambia de forma suave, cuando no se une ni rompe, o lo hace de forma repentina en caso contrario. Los procesos de unión y rotura pueden entenderse como una cascada directa (roturas) o inversa (uniones), siguiendo el concepto de cascada de remolinos ideado por Richardson (1920) y Obukhov (1941). El análisis de los datos muestra que las estructuras con tamaños menores a 30η (unidades de Kolmogorov) nunca se unen ni rompen, es decir, no experimentan el proceso de cascada. Por el contrario, aquellas mayores a 100η siempre se rompen o unen al menos una vez en su vida. En estos casos, el volumen total ganado y perdido es una fracción importante del volumen medio de la estructura implicada, con una tendencia ligeramente mayor a romperse (cascada directa) que a unirse (cascade inversa). La mayor parte de interacciones entre ramas se debe a roturas o uniones de fragmentos muy pequeños en la escala de Kolmogorov con estructuras más grandes, aunque el efecto de fragmentos de mayor tamaño no es despreciable. También hemos encontrado que las roturas tienen a ocurrir al final de la vida de la estructura y las uniones al principio. Aunque los resultados para la cascada directa e inversa no son idénticos, son muy simétricos, lo que sugiere un alto grado de reversibilidad en el proceso de cascada. ABSTRACT The purpose of the present thesis is to study the dynamics of the logarithmic layer of wall-bounded turbulent flows. Specifically, to propose a new structural model based on four different coherent structures: sweeps, ejections, clusters of vortices and velocity streaks. The tool used is the direct numerical simulation of time-resolved turbulent channels. Since the first work by Theodorsen (1952), coherent structures have played an important role in the understanding of turbulence organization and its dynamics. Nowadays, data from individual snapshots of direct numerical simulations allow to study the threedimensional statistical properties of those objects, but their dynamics can only be fully understood by tracking them in time. Although the temporal evolution has already been studied for small structures at moderate Reynolds numbers, e.g., Robinson (1991), a temporal analysis of three-dimensional structures spanning from the smallest to the largest scales across the logarithmic layer has yet to be performed and is the goal of the present thesis. The most interesting problems lie in the logarithmic region, which is the seat of cascades of vorticity, energy, and momentum. Different models involving coherent structures have been proposed to represent the organization of wall-bounded turbulent flows in the logarithmic layer. One of the most extended ones was conceived by Adrian et al. (2000) and built on packets of hairpins that grow from the wall and work cooperatively to gen- ´ erate low-momentum ramps. A different view was presented by del Alamo & Jim´enez (2006), who extracted coherent vortical structures from DNSs and proposed a less organized scenario. Although the two models are kinematically fairly similar, they have important dynamical differences, mostly regarding the relevance of the wall. Another open question is whether such a model can be used to explain the cascade process proposed by Kolmogorov (1941b) in terms of coherent structures. The challenge would be to identify coherent structures undergoing a turbulent cascade that can be quantified. To gain a better insight into the previous questions, we have developed a novel method to track coherent structures in time, and used it to characterize the temporal evolutions of eddies in turbulent channels with Reynolds numbers high enough to include a non-trivial range of length scales, and computational domains sufficiently long and wide to reproduce correctly the dynamics of the logarithmic layer. Our efforts have followed four steps. First, we have conducted a campaign of direct numerical simulations of turbulent channels at different Reynolds numbers and box sizes, and assessed the effect of the computational domain in the one-point statistics and spectra. From the results, we have concluded that computational domains with streamwise and spanwise sizes 2vr and vr times the half-height of the channel, respectively, are large enough to accurately capture the dynamical interactions between structures in the logarithmic layer and the rest of the scales. These simulations are used in the subsequent chapters. Second, the three-dimensional structures of intense tangential Reynolds stress in plane turbulent channels (Qs) have been studied by extending the classical quadrant analysis to three dimensions, with emphasis on the logarithmic and outer layers. The eddies are identified as connected regions of intense tangential Reynolds stress. Qs are then classified according to their streamwise and wall-normal fluctuating velocities as inward interactions, outward interactions, sweeps and ejections. It is found that wall-detached Qs are isotropically oriented background stress fluctuations, common to most turbulent flows, and do not contribute to the mean stress. Most of the stress is carried by a selfsimilar family of larger wall-attached Qs, increasingly complex away from the wall, with fractal dimensions « 2. They have shapes similar to ‘sponges of flakes’, while vortex clusters resemble ‘sponges of strings’. Although their number decays away from the wall, the fraction of the stress that they carry is independent of their heights, and a substantial part resides in a few objects extending beyond the centerline, reminiscent of the very large scale motions of several authors. The predominant logarithmic-layer structures are sideby- side pairs of sweeps and ejections, with an associated vortex cluster, and dimensions and stresses similar to Townsend’s conjectured wall-attached eddies. Third, the temporal evolution of Qs and vortex clusters are studied using time-resolved DNS data up to ReT = 4200 (friction Reynolds number). The eddies are identified following the procedure presented above, and then tracked in time. From the geometric intersection of structures in consecutive fields, we have built temporal connection graphs of all the objects, and defined main and secondary branches in a way that each branch represents the temporal evolution of one coherent structure. Once these evolutions are properly organized, they provide the necessary information to characterize eddies from birth to death. The results show that the eddies are born at all distances from the wall, although with higher probability near it, where the shear is strongest. Most of them stay small and do not last for long times. However, there is a family of eddies that become large enough to attach to the wall while they reach into the logarithmic layer, and become the wall-attached structures previously observed in instantaneous flow fields. They are geometrically self-similar, with sizes and lifetimes proportional to their distance from the wall. Most of them achieve lengths well above the Corrsin’ scale, and hence, their dynamics are controlled by the mean shear. Eddies associated with ejections move away from the wall with an average velocity uT (friction velocity), and their base attaches very fast at the beginning of their lives. Conversely, sweeps move towards the wall at -uT, and attach later. In both cases, they remain attached for 2/3 of their lives. In the streamwise direction, eddies are advected and deformed by the local mean velocity. Finally, we interpret the turbulent cascade not only as a way to conceptualize the flow, but as an actual physical process in which coherent structures merge and split. The volume of an eddy can change either smoothly, when they are not merging or splitting, or through sudden changes. The processes of merging and splitting can be thought of as a direct (when splitting) or an inverse (when merging) cascade, following the ideas envisioned by Richardson (1920) and Obukhov (1941). It is observed that there is a minimum length of 30η (Kolmogorov units) above which mergers and splits begin to be important. Moreover, all eddies above 100η split and merge at least once in their lives. In those cases, the total volume gained and lost is a substantial fraction of the average volume of the structure involved, with slightly more splits (direct cascade) than mergers. Most branch interactions are found to be the shedding or absorption of Kolmogorov-scale fragments by larger structures, but more balanced splits or mergers spanning a wide range of scales are also found to be important. The results show that splits are more probable at the end of the life of the eddy, while mergers take place at the beginning of the life. Although the results for the direct and the inverse cascades are not identical, they are found to be very symmetric, which suggests a high degree of reversibility of the cascade process.
Resumo:
The characteristics of turbulent/nonturbulent interfaces (TNTI) from boundary layers, jets and shear-free turbulence are compared using direct numerical simulations. The TNTI location is detected by assessing the volume of turbulent flow as function of the vorticity magnitude and is shown to be equivalent to other procedures using a scalar field. Vorticity maps show that the boundary layer contains a larger range of scales at the interface than in jets and shear-free turbulence where the change in vorticity characteristics across the TNTI is much more dramatic. The intermittency parameter shows that the extent of the intermittency region for jets and boundary layers is similar and is much bigger than in shear-free turbulence, and can be used to compute the vorticity threshold defining the TNTI location. The statistics of the vorticity jump across the TNTI exhibit the imprint of a large range of scales, from the Kolmogorov micro-scale to scales much bigger than the Taylor scale. Finally, it is shown that contrary to the classical view, the low-vorticity spots inside the jet are statistically similar to isotropic turbulence, suggesting that engulfing pockets simply do not exist in jets
Resumo:
The determination of the local Lagrangian evolution of the flow topology in wall-bounded turbulence, and of the Lagrangian evolution associated with entrainment across the turbulent / non-turbulent interface into a turbulent boundary layer, require accurate tracking of a fluid particle and its local velocity gradients. This paper addresses the implementation of fluid-particle tracking in both a turbulent boundary layer direct numerical simulation and in a fully developed channel flow simulation. Determination of the sub-grid particle velocity is performed using both cubic B-spline, four-point Hermite spline and higher-order Hermite spline interpolation. Both wall-bounded flows show similar oscillations in the Lagrangian tracers of both velocity and velocity gradients, corresponding to the movement of particles across the boundaries of computational cells. While these oscillation in the particle velocity are relatively small and have negligible effect on the particle trajectories for time-steps of the order of CFL = 0.1, they appear to be the cause of significant oscillations in the evolution of the invariants of the velocity gradient tensor.
Resumo:
Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and a low disturbances level such that unwanted transitional mechanisms are avoided. The studied boundary layers have been developed on a flat plate, by imposing a pressure gradient by means of contoured walls. They generate an initial acceleration region followed by a deceleration zone. The initial region is designed to obtain at the beginning of the deceleration the Blasius profile, characterized by its momentum thickness, and an edge boundary layer velocity, defining the problem characteristic velocity. The deceleration region is designed to obtain a linear evolution of the edge velocity, thereby defining the characteristic length of the problem. Several experimental techniques, both intrusive (hot wire anemometry, total pressure probes) as nonintrusive (PIV and LDV anemometry, high-speed filming), have been used in order to take advantage of each of them and allow cross-validation of the results. Once the boundary layer at the deceleration beginning has been characterized, ensuring the desired integral parameters and level of disturbance, the evolution of the laminar boundary layer up to the point of separation is studied. It has been compared with integral methods, and numerical simulations. In view of the results a new model for this evolution is proposed. Downstream from the separation, the flow near to the wall is configured as a shear layer that encloses low momentum recirculating fluid. The region where the shear layer remains laminar tends to be positioned to compensate the adverse pressure gradient associated with the imposed deceleration. Under these conditions, the momentum thickness remains almost constant. This laminar shear layer region extends up to where transitional phenomena appear, extension that scales with the momentum thickness at separation. These transitional phenomena are of inviscid type, similar to those found in free shear layers. The transitional region analysis begins with a study of the disturbances evolution in the linear growth region and the comparison of experimental results with a numerical model based on Linear Stability Theory for parallel flows and with data from other authors. The results’ coalescence for both the disturbances growth and the excited frequencies is stated. For the transition final stages the vorticity concentration into vortex blobs is found, analogously to what happens in free shear layers. Unlike these, the presence of the wall and the pressure gradient make the large scale structures to move towards the wall and quickly disappear under certain circumstances. In these cases, the recirculating flow is confined into a closed region saying the bubble is closed or the boundary layer reattaches. From the reattachment point, the fluid shows a configuration in the vicinity of the wall traditionally considered as turbulent. It has been observed that existing integral methods for turbulent boundary layers do not fit well to the experimental results, due to these methods being valid only for fully developed turbulent flow. Nevertheless, it has been found that downstream from the reattachment point the velocity profiles are self-similar, and a model has been proposed for the evolution of the integral parameters of the boundary layer in this region. Finally, the phenomenon known as bubble burst is analyzed. It has been checked the validity of existing models in literature and a new one is proposed. This phenomenon is blamed to the inability of the large scale structures formed after the transition to overcome with the adverse pressure gradient, move towards the wall and close the bubble. El estudio de capas límites transicionales con separación es de gran relevancia en distintas aplicaciones tecnológicas. Particularmente, en tecnología aeronáutica, aparecen en procesos claves, tales como el flujo alrededor de alas o álabes de turbomaquinaria. El objetivo de esta tesis es el estudio de estos flujos en situaciones representativas de las aplicaciones tecnológicas, ganando por un lado conocimiento sobre la fenomenología y los procesos físicos que aparecen y, por otra parte, desarrollando un modelo sencillo para el escalado de los mismos. Para conseguir este objetivo se han realizado ensayos en una instalación experimental de baja velocidad específicamente diseñada para asegurar un flujo homogéneo y con bajo nivel de perturbaciones, de modo que se evita el disparo de mecanismos transicionales no deseados. La capa límite bajo estudio se ha desarrollado sobre una placa plana, imponiendo un gradiente de presión a la misma por medio de paredes de geometría especificada. éstas generan una región inicial de aceleración seguida de una zona de deceleración. La región inicial se diseña para tener en al inicio de la deceleración un perfil de capa límite de Blasius, caracterizado por su espesor de cantidad de movimiento, y una cierta velocidad externa a la capa límite que se considera la velocidad característica del problema. La región de deceleración está concebida para que la variación de la velocidad externa a la capa límite sea lineal, definiendo de esta forma una longitud característica del problema. Los ensayos se han realizado explotando varias técnicas experimentales, tanto intrusivas (anemometría de hilo caliente, sondas de presión total) como no intrusivas (anemometrías láser y PIV, filmación de alta velocidad), de cara a aprovechar las ventajas de cada una de ellas y permitir validación cruzada de resultados entre las mismas. Caracterizada la capa límite al comienzo de la deceleración, y garantizados los parámetros integrales y niveles de perturbación deseados se procede al estudio de la zona de deceleración. Se presenta en la tesis un análisis de la evolución de la capa límite laminar desde el inicio de la misma hasta el punto de separación, comparando con métodos integrales, simulaciones numéricas, y proponiendo un nuevo modelo para esta evolución. Aguas abajo de la separación, el flujo en las proximidades de la pared se configura como una capa de cortadura que encierra una región de fluido recirculatorio de baja cantidad de movimiento. Se ha caracterizado la región en que dicha capa de cortadura permanece laminar, encontrando que se posiciona de modo que compensa el gradiente adverso de presión asociado a la deceleración de la corriente. En estas condiciones, el espesor de cantidad de movimiento permanece prácticamente constante y esta capa de cortadura laminar se extiende hasta que los fenómenos transicionales aparecen. Estos fenómenos son de tipo no viscoso, similares a los que aparecen en una capa de cortadura libre. El análisis de la región transicional comienza con un estudio de la evolución de las vii viii RESUMEN perturbaciones en la zona de crecimiento lineal de las mismas y la comparación de los resultados experimentales con un modelo numérico y con datos de otros autores. La coalescencia de los resultados tanto para el crecimiento de las perturbaciones como para las frecuencias excitadas queda demostrada. Para los estadios finales de la transición se observa la concentración de la vorticidad en torbellinos, de modo análogo a lo que ocurre en capas de cortadura libres. A diferencia de estas, la presencia de la pared y del gradiente de presión hace que, bajo ciertas condiciones, la gran escala se desplace hacia la pared y desaparezca rápidamente. En este caso el flujo recirculatorio queda confinado en una región cerrada y se habla de cierre de la burbuja o readherencia de la capa límite. A partir del punto de readherencia se tiene una configuración fluida en las proximidades de la pared que tradicionalmente se ha considerado turbulenta. Se ha observado que los métodos integrales existentes para capas límites turbulentas no ajustan bien a las medidas experimentales realizadas, hecho imputable a que no se obtiene en dicha región un flujo turbulento plenamente desarrollado. Se ha encontrado, sin embargo, que pasado el punto de readherencia los perfiles de velocidad próximos a la pared son autosemejantes entre sí y se ha propuesto un modelo para la evolución de los parámetros integrales de la capa límite en esta región. Finalmente, el fenómeno conocido como “estallido” de la burbuja se ha analizado. Se ha comprobado la validez de los modelos existentes en la literatura y se propone uno nuevo. Este fenómeno se achaca a la incapacidad de la gran estructura formada tras la transición para vencer el gradiente adverso de presión, desplazarse hacia la pared y cerrar la burbuja.
Resumo:
The linear instability and breakdown to turbulence induced by an isolated roughness element in a boundary layer at Mach 2:5, over an isothermal flat plate with laminar adiabatic wall temperature, have been analysed by means of direct numerical simulations, aided by spatial BiGlobal and three-dimensional parabolized (PSE-3D) stability analyses. It is important to understand transition in this flow regime since the process can be slower than in incompressible flow and is crucial to prediction of local heat loads on next-generation flight vehicles. The results show that the roughness element, with a height of the order of the boundary layer displacement thickness, generates a highly unstable wake, which is composed of a low-velocity streak surrounded by a three-dimensional high-shear layer and is able to sustain the rapid growth of a number of instability modes. The most unstable of these modes are associated with varicose or sinuous deformations of the low-velocity streak; they are a consequence of the instability developing in the three-dimensional shear layer as a whole (the varicose mode) or in the lateral shear layers (the sinuous mode). The most unstable wake mode is of the varicose type and grows on average 17% faster tan the most unstable sinuous mode and 30 times faster than the most unstable boundary layer mode occurring in the absence of a roughness element. Due to the high growthrates registered in the presence of the roughness element, an amplification factor of N D 9 is reached within 50 roughness heights from the roughness trailing edge. The independently performed Navier–Stokes, spatial BiGlobal and PSE-3D stability results are in excellent agreement with each other, validating the use of simplified theories for roughness-induced transition involving wake instabilities. Following the linear stages of the laminar–turbulent transition process, the roll-up of the three-dimensional shear layer leads to the formation of a wedge of turbulence, which spreads laterally at a rate similar to that observed in the case of compressible turbulent spots for the same Mach number.