59 resultados para Turbulent Flocculation

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulent mixing is a very important issue in the study of geophysical phenomena because most fluxes arising in geophysics fluids are turbulent. We study turbulent mixing due to convection using a laboratory experimental model with two miscible fluids of different density with an initial top heavy density distribution. The fluids that form the initial unstable stratification are miscible and the turbulence will produce molecular mixing. The denser fluid comes into the lighter fluid layer and it generates several forced plumes which are gravitationally unstable. As the turbulent plumes develop, the denser fluid comes into contact with the lighter fluid layer and the mixing process grows. Their development is caused by the lateral interaction between these plumes at the complex fractal surface between the dense and light fluids

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion of solid particles in the turbulent recirculation zones of sudden expansion pipes can be characterized by different Stokes numbers and mean drift parameter and its study is important because this kind of flows appears in many technological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear instability and breakdown to turbulence induced by an isolated roughness element in a boundary layer at Mach 2:5, over an isothermal flat plate with laminar adiabatic wall temperature, have been analysed by means of direct numerical simulations, aided by spatial BiGlobal and three-dimensional parabolized (PSE-3D) stability analyses. It is important to understand transition in this flow regime since the process can be slower than in incompressible flow and is crucial to prediction of local heat loads on next-generation flight vehicles. The results show that the roughness element, with a height of the order of the boundary layer displacement thickness, generates a highly unstable wake, which is composed of a low-velocity streak surrounded by a three-dimensional high-shear layer and is able to sustain the rapid growth of a number of instability modes. The most unstable of these modes are associated with varicose or sinuous deformations of the low-velocity streak; they are a consequence of the instability developing in the three-dimensional shear layer as a whole (the varicose mode) or in the lateral shear layers (the sinuous mode). The most unstable wake mode is of the varicose type and grows on average 17% faster tan the most unstable sinuous mode and 30 times faster than the most unstable boundary layer mode occurring in the absence of a roughness element. Due to the high growthrates registered in the presence of the roughness element, an amplification factor of N D 9 is reached within 50 roughness heights from the roughness trailing edge. The independently performed Navier–Stokes, spatial BiGlobal and PSE-3D stability results are in excellent agreement with each other, validating the use of simplified theories for roughness-induced transition involving wake instabilities. Following the linear stages of the laminar–turbulent transition process, the roll-up of the three-dimensional shear layer leads to the formation of a wedge of turbulence, which spreads laterally at a rate similar to that observed in the case of compressible turbulent spots for the same Mach number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis estudia las similitudes y diferencias entre los flujos turbulentos de pared de tipo externo e interno, en régimen incompresible, y a números de Reynolds moderada¬mente altos. Para ello consideramos tanto simulaciones numéricas como experimentos de capas límites con gradiente de presiones nulo y de flujos de canal, ambos a números de Reynolds en el rango δ+ ~ 500 - 2000. Estos flujos de cortadura son objeto de numerosas investigaciones debido a la gran importancia que tienen tanto a nivel tecnológico como a nivel de física fundamental. No obstante, todavía existen muchos interrogantes sobre aspectos básicos tales como la universalidad de los perfiles medios y de fluctuación de las velocidades o de la presión, tanto en la zona cercana a la pared como en la zona logarítmica, el escalado y el efecto del número de Reynolds, o las diferencias entre los flujos internos y externos en la zona exterior. En éste estudio hemos utilizado simulaciones numéricas ya existentes de canales y capas límites a números de Reynolds δ+ ~ 2000 y δ+ ~ 700, respectivamente. Para poder comparar ambos flujos a igual número de Reynolds hemos realizado una nueva simulación directa de capa límite en el rango δ+ ~ 1000-2000. Los resultados de la misma son presentados y analizados en detalle. Los datos sin postprocesar y las estadísticas ya postprocesadas están públicamente disponibles en nuestro sitio web.162 El análisis de las estadísticas usando un único punto confirma la existencia de perfiles logarítmicos para las fluctuaciones de la velocidad transversal w'2+ y de la presión p'2+ en ambos tipos de flujos, pero no para la velocidad normal v'2+ o la velocidad longitudinal u'2+. Para aceptar o rechazar la existencia de un rango logarítmico en u'2+ se requieren números de Reynolds más altos que los considerados en éste trabajo. Una de las conse¬cuencias más importantes de poseer tales perfiles es que el valor máximo de la intensidad, que se alcanza cerca de la pared, depende explícitamente del número de Reynolds. Esto ha sido confirmado tras analizar un gran número de datos experimentales y numéricos, cor¬roborando que el máximo de u'2+, p/2+, y w'2+ aumenta proporcionalmente con el log(δ+). Por otro lado, éste máximo es más intenso en los flujos externos que en los internos. La máxima diferencia ocurre en torno a y/δ ~ 0.3-0.5, siendo esta altura prácticamente independiente del número de Reynolds considerado. Estas diferencias se originan como consecuencia del carácter intermitente de las capas límites, que es inexistente en los flujos internos. La estructura de las fluctuaciones de velocidad y de presión, junto con la de los esfuer¬zos de Reynolds, se han investigado por medio de correlaciones espaciales tridimensionales considerando dos puntos de medida. Hemos obtenido que el tamaño de las mismas es gen¬eralmente mayor en canales que en capas límites, especialmente en el caso de la correlación longitudinal Cuu en la dirección del flujo. Para esta correlación se demuestra que las es¬tructuras débilmente correladas presentan longitudes de hasta 0(75), en el caso de capas límites, y de hasta 0(185) en el caso de canales. Estas longitudes se obtienen respecti-vamente en la zona logarítmica y en la zona exterior. Las longitudes correspondientes en la dirección transversal son significativamente menores en ambos flujos, 0(5 — 25). La organización espacial de las correlaciones es compatible con la de una pareja de rollos casi paralelos con dimensiones que escalan en unidades exteriores. Esta organización se mantiene al menos hasta y ~ 0.65, altura a la cual las capas límites comienzan a organi¬zarse en rollos transversales. Este comportamiento es sin embargo más débil en canales, pudiéndose observar parcialmente a partir de y ~ 0.85. Para estudiar si estas estructuras están onduladas a lo largo de la dirección transver¬sal, hemos calculado las correlaciones condicionadas a eventos intensos de la velocidad transversal w'. Estas correlaciones revelan que la ondulación de la velocidad longitudinal aumenta conforme nos alejamos de la pared, sugiriendo que las estructuras están más alineadas en la zona cercana a la pared que en la zona lejana a ella. El por qué de esta ondulación se encuentra posiblemente en la configuración a lo largo de diagonales que presenta w'. Estas estructuras no sólo están onduladas, sino que también están inclinadas respecto a la pared con ángulos que dependen de la variable considerada, de la altura, y de el contorno de correlación seleccionado. Por encima de la zona tampón e independien¬temente del número de Reynolds y tipo de flujo, Cuu presenta una inclinación máxima de unos 10°, las correlaciones Cvv y Cm son esencialmente verticales, y Cww está inclinada a unos 35°. Summary This thesis studies the similitudes and differences between external and internal in¬compressible wall-bounded turbulent flows at moderately-high Reynolds numbers. We consider numerical and experimental zero-pressure-gradient boundary layers and chan¬nels in the range of δ+ ~ 500 — 2000. These shear flows are subjects of intensive research because of their technological importance and fundamental physical interest. However, there are still open questions regarding basic aspects such as the universality of the mean and fluctuating velocity and pressure profiles at the near-wall and logarithmic regions, their scaling and the effect of the Reynolds numbers, or the differences between internal and external flows at the outer layer, to name but a few. For this study, we made use of available direct numerical simulations of channel and boundary layers reaching δ+ ~ 2000 and δ+ ~ 700, respectively. To fill the gap in the Reynolds number, a new boundary layer simulation in the range δ+ ~ 1000-2000 is presented and discussed. The original raw data and the post-processed statistics are publicly available on our website.162 The analysis of the one-point statistic confirms the existence of logarithmic profiles for the spanwise w'2+ and pressure p'2+ fluctuations for both type of flows, but not for the wall-normal v'2+ or the streamwise u'2+ velocities. To accept or reject the existence of a logarithmic range in u'2+ requires higher Reynolds numbers than the ones considered in this work. An important consequence of having such profiles is that the maximum value of the intensities, reached near the wall, depends on the Reynolds number. This was confirmed after surveying a wide number of experimental and numerical datasets, corrob¬orating that the maximum of ul2+, p'2+, and w'2+ increases proportionally to log(δ+). On the other hand, that maximum is more intense in external flows than in internal ones, differing the most around y/δ ~ 0.3-0.5, and essentially independent of the Reynolds number. We discuss that those differences are originated as a consequence of the inter¬mittent character of boundary layers that is absent in internal flows. The structure of the velocity and pressure fluctuations, together with those of the Reynolds shear stress, were investigated using three-dimensional two-point spatial correlations. We find that the correlations extend over longer distances in channels than in boundary layers, especially in the case of the streamwise correlation Cuu in the flow direc-tion. For weakly correlated structures, the maximum streamwise length of Cuu is O(78) for boundary layers and O(188) for channels, attained at the logarithmic and outer regions respectively. The corresponding lengths for the transverse velocities and for the pressure are shorter, 0(8 — 28), and of the same order for both flows. The spatial organization of the velocity correlations is shown to be consistent with a pair of quasi-streamwise rollers that scales in outer units. That organization is observed until y ~ 0.68, from which boundary layers start to organize into spanwise rollers. This effect is weaker in channels, and it appears at y ~ 0.88. We present correlations conditioned to intense events of the transversal velocity, w', to study if these structures meander along the spanwise direction. The results indicate that the streamwise velocity streaks increase their meandering proportionally to the distance to the wall, suggesting that the structures are more aligned close to the wall than far from it. The reason behind this meandering is probably due to the characteristic organization along diagonals of w'. These structures not only meander along the spanwise direction, but they are also inclined to the wall at angles that depend on the distance from the wall, on the variable being considered, and on the correlation level used to define them. Above the buffer layer and independent of the Reynolds numbers and type of flow, the maximum inclination of Cuu is about 10°, Cvv and Cpp are roughly vertical, and Cww is inclined by 35°.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helicopters are one of the most important tactical elements in maritime operations. The necessity for an improvement in the conditions in which the landing and take-off operations are carried out leads to the study of the flow that separates from the ship?s superstructure over the flight deck. To investigate this flow a series of wind tunnel experiments have been performed by testing a sub-scale model of a generic frigate. Measurements of the flow?s velocity have been taken by means of Laser Doppler Anemometry (LDA) in five points that simulate the last path of the landing trajectory. The data obtained in these experiments is manipulated in a frequency analysis where the corresponding spectra are calculated. Onboard measurements from an actual full scale frigate are analyzed and compared with the wind tunnel results. Conclusions obtained consist of a series of illustrative values of turbulent energy frequency ranges which can be valuable for any study in this field. The comparison shows a clear similarity between both experiments, reasserting the wind tunnel measurements and its reliability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A body with a shape similar to a hot wire with its sheath, but no prongs, has been placed close to the wall of a turbulent channel at Re_tau = 600. The results of the channel flow, without the wire, agree with previous published ones, despite the modest resolution and domain size. A simplified, two-dimensional version of the wire at the same Reynolds number has been studied to compare the dynamic response of cold and hot wires, where a slightly bigger perturbation is seen in the hot case, but an almost identical dynamic response. The cold wire seems to be able to measure instantaneous velocity with total drag after proper calibration. Being a DNS, the complete description of the flow field around the wire is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we use large eddy simulations (LES) and Lagrangian tracking to study the influence of gravity on particle statistics in a fully developed turbulent upward/downward flow in a vertical channel and pipe at matched Kàrmàn number. Only drag and gravity are considered in the equation of motion for solid particles, which are assumed to have no influence on the flow field. Particle interactions with the wall are fully elastic. Our findings obtained from the particle statistics confirm that: (i) the gravity seems to modify both the quantitative and qualitative behavior of the particle distribution and statistics of the particle velocity in wall normal direction; (ii) however, only the quantitative behavior of velocity particle in streamwise direction and the root mean square of velocity components is modified; (iii) the statistics of fluid and particles coincide very well near the wall in channel and pipe flow with equal Kàrmàn number; (iv) pipe curvature seems to have quantitative and qualitative influence on the particle velocity and on the particle concentration in wall normal direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de esta tesis es estudiar la dinámica de la capa logarítmica de flujos turbulentos de pared. En concreto, proponemos un nuevo modelo estructural utilizando diferentes tipos de estructuras coherentes: sweeps, eyecciones, grupos de vorticidad y streaks. La herramienta utilizada es la simulación numérica directa de canales turbulentos. Desde los primeros trabajos de Theodorsen (1952), las estructuras coherentes han jugado un papel fundamental para entender la organización y dinámica de los flujos turbulentos. A día de hoy, datos procedentes de simulaciones numéricas directas obtenidas en instantes no contiguos permiten estudiar las propiedades fundamentales de las estructuras coherentes tridimensionales desde un punto de vista estadístico. Sin embargo, la dinámica no puede ser entendida en detalle utilizando sólo instantes aislados en el tiempo, sino que es necesario seguir de forma continua las estructuras. Aunque existen algunos estudios sobre la evolución temporal de las estructuras más pequeñas a números de Reynolds moderados, por ejemplo Robinson (1991), todavía no se ha realizado un estudio completo a altos números de Reynolds y para todas las escalas presentes de la capa logarítmica. El objetivo de esta tesis es llevar a cabo dicho análisis. Los problemas más interesantes los encontramos en la región logarítmica, donde residen las cascadas de vorticidad, energía y momento. Existen varios modelos que intentan explicar la organización de los flujos turbulentos en dicha región. Uno de los más extendidos fue propuesto por Adrian et al. (2000) a través de observaciones experimentales y considerando como elemento fundamental paquetes de vórtices con forma de horquilla que actúan de forma cooperativa para generar rampas de bajo momento. Un modelo alternativo fué ideado por del Álamo & Jiménez (2006) utilizando datos numéricos. Basado también en grupos de vorticidad, planteaba un escenario mucho más desorganizado y con estructuras sin forma de horquilla. Aunque los dos modelos son cinemáticamente similares, no lo son desde el punto de vista dinámico, en concreto en lo que se refiere a la importancia que juega la pared en la creación y vida de las estructuras. Otro punto importante aún sin resolver se refiere al modelo de cascada turbulenta propuesto por Kolmogorov (1941b), y su relación con estructuras coherentes medibles en el flujo. Para dar respuesta a las preguntas anteriores, hemos desarrollado un nuevo método que permite seguir estructuras coherentes en el tiempo y lo hemos aplicado a simulaciones numéricas de canales turbulentos con números de Reynolds lo suficientemente altos como para tener un rango de escalas no trivial y con dominios computacionales lo suficientemente grandes como para representar de forma correcta la dinámica de la capa logarítmica. Nuestros esfuerzos se han desarrollado en cuatro pasos. En primer lugar, hemos realizado una campaña de simulaciones numéricas directas a diferentes números de Reynolds y tamaños de cajas para evaluar el efecto del dominio computacional en las estadísticas de primer orden y el espectro. A partir de los resultados obtenidos, hemos concluido que simulaciones con cajas de longitud 2vr y ancho vr veces la semi-altura del canal son lo suficientemente grandes para reproducir correctamente las interacciones entre estructuras coherentes de la capa logarítmica y el resto de escalas. Estas simulaciones son utilizadas como punto de partida en los siguientes análisis. En segundo lugar, las estructuras coherentes correspondientes a regiones con esfuerzos de Reynolds tangenciales intensos (Qs) en un canal turbulento han sido estudiadas extendiendo a tres dimensiones el análisis de cuadrantes, con especial énfasis en la capa logarítmica y la región exterior. Las estructuras coherentes han sido identificadas como regiones contiguas del espacio donde los esfuerzos de Reynolds tangenciales son más intensos que un cierto nivel. Los resultados muestran que los Qs separados de la pared están orientados de forma isótropa y su contribución neta al esfuerzo de Reynolds medio es nula. La mayor contribución la realiza una familia de estructuras de mayor tamaño y autosemejantes cuya parte inferior está muy cerca de la pared (ligada a la pared), con una geometría compleja y dimensión fractal « 2. Estas estructuras tienen una forma similar a una ‘esponja de placas’, en comparación con los grupos de vorticidad que tienen forma de ‘esponja de cuerdas’. Aunque el número de objetos decae al alejarnos de la pared, la fracción de esfuerzos de Reynolds que contienen es independiente de su altura, y gran parte reside en unas pocas estructuras que se extienden más allá del centro del canal, como en las grandes estructuras propuestas por otros autores. Las estructuras dominantes en la capa logarítmica son parejas de sweeps y eyecciones uno al lado del otro y con grupos de vorticidad asociados que comparten las dimensiones y esfuerzos con los remolinos ligados a la pared propuestos por Townsend. En tercer lugar, hemos estudiado la evolución temporal de Qs y grupos de vorticidad usando las simulaciones numéricas directas presentadas anteriormente hasta números de Reynolds ReT = 4200 (Reynolds de fricción). Las estructuras fueron identificadas siguiendo el proceso descrito en el párrafo anterior y después seguidas en el tiempo. A través de la interseción geométrica de estructuras pertenecientes a instantes de tiempo contiguos, hemos creado gratos de conexiones temporales entre todos los objetos y, a partir de ahí, definido ramas primarias y secundarias, de tal forma que cada rama representa la evolución temporal de una estructura coherente. Una vez que las evoluciones están adecuadamente organizadas, proporcionan toda la información necesaria para caracterizar la historia de las estructuras desde su nacimiento hasta su muerte. Los resultados muestran que las estructuras nacen a todas las distancias de la pared, pero con mayor probabilidad cerca de ella, donde la cortadura es más intensa. La mayoría mantienen tamaños pequeños y no viven mucho tiempo, sin embargo, existe una familia de estructuras que crecen lo suficiente como para ligarse a la pared y extenderse a lo largo de la capa logarítmica convirtiéndose en las estructuras observas anteriormente y descritas por Townsend. Estas estructuras son geométricamente autosemejantes con tiempos de vida proporcionales a su tamaño. La mayoría alcanzan tamaños por encima de la escala de Corrsin, y por ello, su dinámica está controlada por la cortadura media. Los resultados también muestran que las eyecciones se alejan de la pared con velocidad media uT (velocidad de fricción) y su base se liga a la pared muy rápidamente al inicio de sus vidas. Por el contrario, los sweeps se mueven hacia la pared con velocidad -uT y se ligan a ella más tarde. En ambos casos, los objetos permanecen ligados a la pared durante 2/3 de sus vidas. En la dirección de la corriente, las estructuras se desplazan a velocidades cercanas a la convección media del flujo y son deformadas por la cortadura. Finalmente, hemos interpretado la cascada turbulenta, no sólo como una forma conceptual de organizar el flujo, sino como un proceso físico en el cual las estructuras coherentes se unen y se rompen. El volumen de una estructura cambia de forma suave, cuando no se une ni rompe, o lo hace de forma repentina en caso contrario. Los procesos de unión y rotura pueden entenderse como una cascada directa (roturas) o inversa (uniones), siguiendo el concepto de cascada de remolinos ideado por Richardson (1920) y Obukhov (1941). El análisis de los datos muestra que las estructuras con tamaños menores a 30η (unidades de Kolmogorov) nunca se unen ni rompen, es decir, no experimentan el proceso de cascada. Por el contrario, aquellas mayores a 100η siempre se rompen o unen al menos una vez en su vida. En estos casos, el volumen total ganado y perdido es una fracción importante del volumen medio de la estructura implicada, con una tendencia ligeramente mayor a romperse (cascada directa) que a unirse (cascade inversa). La mayor parte de interacciones entre ramas se debe a roturas o uniones de fragmentos muy pequeños en la escala de Kolmogorov con estructuras más grandes, aunque el efecto de fragmentos de mayor tamaño no es despreciable. También hemos encontrado que las roturas tienen a ocurrir al final de la vida de la estructura y las uniones al principio. Aunque los resultados para la cascada directa e inversa no son idénticos, son muy simétricos, lo que sugiere un alto grado de reversibilidad en el proceso de cascada. ABSTRACT The purpose of the present thesis is to study the dynamics of the logarithmic layer of wall-bounded turbulent flows. Specifically, to propose a new structural model based on four different coherent structures: sweeps, ejections, clusters of vortices and velocity streaks. The tool used is the direct numerical simulation of time-resolved turbulent channels. Since the first work by Theodorsen (1952), coherent structures have played an important role in the understanding of turbulence organization and its dynamics. Nowadays, data from individual snapshots of direct numerical simulations allow to study the threedimensional statistical properties of those objects, but their dynamics can only be fully understood by tracking them in time. Although the temporal evolution has already been studied for small structures at moderate Reynolds numbers, e.g., Robinson (1991), a temporal analysis of three-dimensional structures spanning from the smallest to the largest scales across the logarithmic layer has yet to be performed and is the goal of the present thesis. The most interesting problems lie in the logarithmic region, which is the seat of cascades of vorticity, energy, and momentum. Different models involving coherent structures have been proposed to represent the organization of wall-bounded turbulent flows in the logarithmic layer. One of the most extended ones was conceived by Adrian et al. (2000) and built on packets of hairpins that grow from the wall and work cooperatively to gen- ´ erate low-momentum ramps. A different view was presented by del Alamo & Jim´enez (2006), who extracted coherent vortical structures from DNSs and proposed a less organized scenario. Although the two models are kinematically fairly similar, they have important dynamical differences, mostly regarding the relevance of the wall. Another open question is whether such a model can be used to explain the cascade process proposed by Kolmogorov (1941b) in terms of coherent structures. The challenge would be to identify coherent structures undergoing a turbulent cascade that can be quantified. To gain a better insight into the previous questions, we have developed a novel method to track coherent structures in time, and used it to characterize the temporal evolutions of eddies in turbulent channels with Reynolds numbers high enough to include a non-trivial range of length scales, and computational domains sufficiently long and wide to reproduce correctly the dynamics of the logarithmic layer. Our efforts have followed four steps. First, we have conducted a campaign of direct numerical simulations of turbulent channels at different Reynolds numbers and box sizes, and assessed the effect of the computational domain in the one-point statistics and spectra. From the results, we have concluded that computational domains with streamwise and spanwise sizes 2vr and vr times the half-height of the channel, respectively, are large enough to accurately capture the dynamical interactions between structures in the logarithmic layer and the rest of the scales. These simulations are used in the subsequent chapters. Second, the three-dimensional structures of intense tangential Reynolds stress in plane turbulent channels (Qs) have been studied by extending the classical quadrant analysis to three dimensions, with emphasis on the logarithmic and outer layers. The eddies are identified as connected regions of intense tangential Reynolds stress. Qs are then classified according to their streamwise and wall-normal fluctuating velocities as inward interactions, outward interactions, sweeps and ejections. It is found that wall-detached Qs are isotropically oriented background stress fluctuations, common to most turbulent flows, and do not contribute to the mean stress. Most of the stress is carried by a selfsimilar family of larger wall-attached Qs, increasingly complex away from the wall, with fractal dimensions « 2. They have shapes similar to ‘sponges of flakes’, while vortex clusters resemble ‘sponges of strings’. Although their number decays away from the wall, the fraction of the stress that they carry is independent of their heights, and a substantial part resides in a few objects extending beyond the centerline, reminiscent of the very large scale motions of several authors. The predominant logarithmic-layer structures are sideby- side pairs of sweeps and ejections, with an associated vortex cluster, and dimensions and stresses similar to Townsend’s conjectured wall-attached eddies. Third, the temporal evolution of Qs and vortex clusters are studied using time-resolved DNS data up to ReT = 4200 (friction Reynolds number). The eddies are identified following the procedure presented above, and then tracked in time. From the geometric intersection of structures in consecutive fields, we have built temporal connection graphs of all the objects, and defined main and secondary branches in a way that each branch represents the temporal evolution of one coherent structure. Once these evolutions are properly organized, they provide the necessary information to characterize eddies from birth to death. The results show that the eddies are born at all distances from the wall, although with higher probability near it, where the shear is strongest. Most of them stay small and do not last for long times. However, there is a family of eddies that become large enough to attach to the wall while they reach into the logarithmic layer, and become the wall-attached structures previously observed in instantaneous flow fields. They are geometrically self-similar, with sizes and lifetimes proportional to their distance from the wall. Most of them achieve lengths well above the Corrsin’ scale, and hence, their dynamics are controlled by the mean shear. Eddies associated with ejections move away from the wall with an average velocity uT (friction velocity), and their base attaches very fast at the beginning of their lives. Conversely, sweeps move towards the wall at -uT, and attach later. In both cases, they remain attached for 2/3 of their lives. In the streamwise direction, eddies are advected and deformed by the local mean velocity. Finally, we interpret the turbulent cascade not only as a way to conceptualize the flow, but as an actual physical process in which coherent structures merge and split. The volume of an eddy can change either smoothly, when they are not merging or splitting, or through sudden changes. The processes of merging and splitting can be thought of as a direct (when splitting) or an inverse (when merging) cascade, following the ideas envisioned by Richardson (1920) and Obukhov (1941). It is observed that there is a minimum length of 30η (Kolmogorov units) above which mergers and splits begin to be important. Moreover, all eddies above 100η split and merge at least once in their lives. In those cases, the total volume gained and lost is a substantial fraction of the average volume of the structure involved, with slightly more splits (direct cascade) than mergers. Most branch interactions are found to be the shedding or absorption of Kolmogorov-scale fragments by larger structures, but more balanced splits or mergers spanning a wide range of scales are also found to be important. The results show that splits are more probable at the end of the life of the eddy, while mergers take place at the beginning of the life. Although the results for the direct and the inverse cascades are not identical, they are found to be very symmetric, which suggests a high degree of reversibility of the cascade process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new high-resolution code for the direct numerical simulation of a zero pressure gradient turbulent boundary layers over a flat plate has been developed. Its purpose is to simulate a wide range of Reynolds numbers from Reθ = 300 to 6800 while showing a linear weak scaling up to 32,768 cores in the BG/P architecture. Special attention has been paid to the generation of proper inflow boundary conditions. The results are in good agreement with existing numerical and experimental data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of turbulent/nonturbulent interfaces (TNTI) from boundary layers, jets and shear-free turbulence are compared using direct numerical simulations. The TNTI location is detected by assessing the volume of turbulent flow as function of the vorticity magnitude and is shown to be equivalent to other procedures using a scalar field. Vorticity maps show that the boundary layer contains a larger range of scales at the interface than in jets and shear-free turbulence where the change in vorticity characteristics across the TNTI is much more dramatic. The intermittency parameter shows that the extent of the intermittency region for jets and boundary layers is similar and is much bigger than in shear-free turbulence, and can be used to compute the vorticity threshold defining the TNTI location. The statistics of the vorticity jump across the TNTI exhibit the imprint of a large range of scales, from the Kolmogorov micro-scale to scales much bigger than the Taylor scale. Finally, it is shown that contrary to the classical view, the low-vorticity spots inside the jet are statistically similar to isotropic turbulence, suggesting that engulfing pockets simply do not exist in jets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of the local Lagrangian evolution of the flow topology in wall-bounded turbulence, and of the Lagrangian evolution associated with entrainment across the turbulent / non-turbulent interface into a turbulent boundary layer, require accurate tracking of a fluid particle and its local velocity gradients. This paper addresses the implementation of fluid-particle tracking in both a turbulent boundary layer direct numerical simulation and in a fully developed channel flow simulation. Determination of the sub-grid particle velocity is performed using both cubic B-spline, four-point Hermite spline and higher-order Hermite spline interpolation. Both wall-bounded flows show similar oscillations in the Lagrangian tracers of both velocity and velocity gradients, corresponding to the movement of particles across the boundaries of computational cells. While these oscillation in the particle velocity are relatively small and have negligible effect on the particle trajectories for time-steps of the order of CFL = 0.1, they appear to be the cause of significant oscillations in the evolution of the invariants of the velocity gradient tensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to analyze a complex high lift configuration for which significant regions of separated flow are present. Current state of the art methods have some diffculty to predict the origin and the progression of this separated flow when increasing the angle of attack. The mechanisms responsible for the maximum lift limit on multi-element wing con?gurations are not clear; this stability analysis could help to understand the physics behind the phenomenon and to find a relation between the flow separation and the instability onset. The methodology presented herein consists in the computation of a steady base flow solution based on a finite volume discretization and a proposal of the solution for a generalized eigenvalue problem corresponding to the perturbed and linearized problem. The eigenvalue problem has been solved with the Arnoldi iterative method, one of the Krylov subspace projection methods. The described methodology was applied to the NACA0012 test case in subsonic and in transonic conditions and, finally, for the first time to the authors knowledge, on an industrial multi-component geometry, such as the A310 airfoil, in order to identify low frequency instabilities related to the separation. One important conclusion is that for all the analyzed geometries, one unstable mode related to flow separation appears for an angle of attack greater than the one correspondent to the maximum lift coe?cient condition. Finally, an adjoint study was carried out in order to evaluate the receptivity and the structural sensitivity of the geometries, giving an indication of the domain region that could be modified resulting in the biggest change of the flowfield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, various turbulent solutions of the two-dimensional (2D) and three-dimensional compressible Reynolds averaged Navier?Stokes equations are analyzed using global stability theory. This analysis is motivated by the onset of flow unsteadiness (Hopf bifurcation) for transonic buffet conditions where moderately high Reynolds numbers and compressible effects must be considered. The buffet phenomenon involves a complex interaction between the separated flow and a shock wave. The efficient numerical methodology presented in this paper predicts the critical parameters, namely, the angle of attack and Mach and Reynolds numbers beyond which the onset of flow unsteadiness appears. The geometry, a NACA0012 profile, and flow parameters selected reproduce situations of practical interest for aeronautical applications. The numerical computation is performed in three steps. First, a steady baseflow solution is obtained; second, the Jacobian matrix for the RANS equations based on a finite volume discretization is computed; and finally, the generalized eigenvalue problem is derived when the baseflow is linearly perturbed. The methodology is validated predicting the 2D Hopf bifurcation for a circular cylinder under laminar flow condition. This benchmark shows good agreement with the previous published computations and experimental data. In the transonic buffet case, the baseflow is computed using the Spalart?Allmaras turbulence model and represents a mean flow where the high frequency content and length scales of the order of the shear-layer thickness have been averaged. The lower frequency content is assumed to be decoupled from the high frequencies, thus allowing a stability analysis to be performed on the low frequency range. In addition, results of the corresponding adjoint problem and the sensitivity map are provided for the first time for the buffet problem. Finally, an extruded three-dimensional geometry of the NACA0012 airfoil, where all velocity components are considered, was also analyzed as a Triglobal stability case, and the outcoming results were compared to the previous 2D limited model, confirming that the buffet onset is well detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis estudia el comportamiento de la región exterior de una capa límite turbulenta sin gradientes de presiones. Se ponen a prueba dos teorías relativamente bien establecidas. La teoría de semejanza para la pared supone que en el caso de haber una pared rugosa, el fluido sólo percibe el cambio en la fricción superficial que causa, y otros efectos secundarios quedarán confinados a una zona pegada a la pared. El consenso actual es que dicha teoría es aproximadamente cierta. En el extremo exterior de la capa límite existe una región producida por la interacción entre las estructuras turbulentas y el flujo irrotacional de la corriente libre llamada interfaz turbulenta/no turbulenta. La mayoría de los resultados al respecto sugieren la presencia de fuerzas de cortadura ligeramente más intensa, lo que la hace distinta al resto del flujo turbulento. Las propiedades de esa región probablemente cambien si la velocidad de crecimiento de la capa límite aumenta, algo que puede conseguirse aumentando la fricción en la pared. La rugosidad y la ingestión de masa están entonces relacionadas, y el comportamiento local de la interfaz turbulenta/no turbulenta puede explicar el motivo por el que las capas límite sobre paredes rugosas no se comportan como en el caso de tener paredes lisas precisamente en la zona exterior. Para estudiar las capas límite a números de Reynolds lo suficientemente elevados, se ha desarrollado un nuevo código de alta resolución para la simulación numérica directa de capas límite turbulentas sin gradiente de presión. Dicho código es capaz de simular capas límite en un intervalo de números de Reynolds entre ReT = 100 — 2000 manteniendo una buena escalabilidad hasta los dos millones de hilos en superordenadores de tipo Blue Gene/Q. Se ha guardado especial atención a la generación de condiciones de contorno a la entrada correctas. Los resultados obtenidos están en concordancia con los resultados previos, tanto en el caso de simulaciones como de experimentos. La interfaz turbulenta/no turbulenta de una capa límite se ha analizado usando un valor umbral del módulo de la vorticidad. Dicho umbral se considera un parámetro para analizar cada superficie obtenida de un contorno del módulo de la vorticidad. Se han encontrado dos regímenes distintos en función del umbral escogido con propiedades opuestas, separados por una transición topológica gradual. Las características geométricas de la zona escalan con o99 cuando u^/isdgg es la unidad de vorticidad. Las propiedades del íluido relativas a la posición del contorno de vorticidad han sido analizados para una serie de umbrales utilizando el campo de distancias esféricas, que puede obtenerse con independencia de la complejidad de la superficie de referencia. Las propiedades del fluido a una distancia dada del inerfaz también dependen del umbral de vorticidad, pero tienen características parecidas con independencia del número de Reynolds. La interacción entre la turbulencia y el flujo no turbulento se restringe a una zona muy fina con un espesor del orden de la escala de Kolmogorov local. Hacia el interior del flujo turbulento las propiedades son indistinguibles del resto de la capa límite. Se ha simulado una capa límite sin gradiente de presiones con una fuerza volumétrica cerca de la pared. La el forzado ha sido diseñado para aumentar la fricción en la pared sin introducir ningún efecto geométrico obvio. La simulación consta de dos dominios, un primer dominio más pequeño y a baja resolución que se encarga de generar condiciones de contorno correctas, y un segundo dominio mayor y a alta resolución donde se aplica el forzado. El estudio de los perfiles y los coeficientes de autocorrelación sugieren que los dos casos, el liso y el forzado, no colapsan más allá de la capa logarítmica por la complejidad geométrica de la zona intermitente, y por el hecho que la distancia a la pared no es una longitud característica. Los efectos causados por la geometría de la zona intermitente pueden evitarse utilizando el interfaz como referencia, y la distancia esférica para el análisis de sus propiedades. Las propiedades condicionadas del flujo escalan con 5QQ y u/uT, las dos únicas escalas contenidas en el modelo de semejanza de pared de Townsend, consistente con estos resultados. ABSTRACT This thesis studies the characteristics of the outer region of zero-pressure-gradient turbulent boundary layers at moderate Reynolds numbers. Two relatively established theories are put to test. The wall similarity theory states that with the presence of roughness, turbulent motion is mostly affected by the additional drag caused by the roughness, and that other secondary effects are restricted to a region very close to the wall. The consensus is that this theory is valid, but only as a first approximation. At the edge of the boundary layer there is a thin layer caused by the interaction between the turbulent eddies and the irroational fluid of the free stream, called turbulent/non-turbulent interface. The bulk of results about this layer suggest the presence of some localized shear, with properties that make it distinguishable from the rest of the turbulent flow. The properties of the interface are likely to change if the rate of spread of the turbulent boundary layer is amplified, an effect that is usually achieved by increasing the drag. Roughness and entrainment are therefore linked, and the local features of the turbulent/non-turbulent interface may explain the reason why rough-wall boundary layers deviate from the wall similarity theory precisely far from the wall. To study boundary layers at a higher Reynolds number, a new high-resolution code for the direct numerical simulation of a zero pressure gradient turbulent boundary layers over a flat plate has been developed. This code is able to simulate a wide range of Reynolds numbers from ReT =100 to 2000 while showing a linear weak scaling up to around two million threads in the BG/Q architecture. Special attention has been paid to the generation of proper inflow boundary conditions. The results are in good agreement with existing numerical and experimental data sets. The turbulent/non-turbulent interface of a boundary layer is analyzed by thresholding the vorticity magnitude field. The value of the threshold is considered a parameter in the analysis of the surfaces obtained from isocontours of the vorticity magnitude. Two different regimes for the surface can be distinguished depending on the threshold, with a gradual topological transition across which its geometrical properties change significantly. The width of the transition scales well with oQg when u^/udgg is used as a unit of vorticity. The properties of the flow relative to the position of the vorticity magnitude isocontour are analyzed within the same range of thresholds, using the ball distance field, which can be obtained regardless of the size of the domain and complexity of the interface. The properties of the flow at a given distance to the interface also depend on the threshold, but they are similar regardless of the Reynolds number. The interaction between the turbulent and the non-turbulent flow occurs in a thin layer with a thickness that scales with the Kolmogorov length. Deeper into the turbulent side, the properties are undistinguishable from the rest of the turbulent flow. A zero-pressure-gradient turbulent boundary layer with a volumetric near-wall forcing has been simulated. The forcing has been designed to increase the wall friction without introducing any obvious geometrical effect. The actual simulation is split in two domains, a smaller one in charge of the generation of correct inflow boundary conditions, and a second and larger one where the forcing is applied. The study of the one-point and twopoint statistics suggest that the forced and the smooth cases do not collapse beyond the logarithmic layer may be caused by the geometrical complexity of the intermittent region, and by the fact that the scaling with the wall-normal coordinate is no longer present. The geometrical effects can be avoided using the turbulent/non-turbulent interface as a reference frame, and the minimum distance respect to it. The conditional analysis of the vorticity field with the alternative reference frame recovers the scaling with 5QQ and v¡uT already present in the logarithmic layer, the only two length-scales allowed if Townsend’s wall similarity hypothesis is valid.