2 resultados para Trombose venosa
em Universidad Politécnica de Madrid
Resumo:
Las diferencias individuales ante cualquier estímulo son parte de la condición humana, y reflejan nuestra diversidad genética, así como la influencia del entorno. Conocer el papel que juegan las variaciones genéticas o polimorfismos, es vital para entender de forma integral la respuesta del organismo al ejercicio. Por tanto, el presente trabajo tiene como objetivo fundamental definir el posible rol de tres variantes genéticas en el metabolismo energético durante la realización de ejercicio físico. Más concretamente, los objetivos principales son, por un lado, observar si existen diferencias en la respuesta láctica en sangre capilar y venosa en función del polimorfismo A1470T del gen del Transportador de Monocarboxilatos 1 (MCT1) (rs1049434). Por otro lado, el segundo objetivo es estudiar si presencia del polimorfismo del gen MCT1 determina parcialmente la máxima concentración de lactato en sangre venosa alcanzada durante diferentes protocolos de circuitos de fuerza. Por último, los objetivos tercero y cuarto se centran en analizar si existen diferencias en las ratios de acilcarnitinas en sangre, que reflejan la actividad de la Carnitina Palmitoiltransferasa II (CPTII), en función de los polimorfismo Val368Ile (rs1799821) y Met647Val (rs1799822) del gen de la CPTII (CPT2) durante la realización de una sesión de Circuito Mixto de musculación-aeróbico. Para la consecución de estos objetivos se realizaron dos estudios (Piloto y General). En el primero de ellos (Estudio Piloto) 10 hombres estudiantes de la Licenciatura en Ciencias de la Actividad Física y del Deporte (CCAFD) realizaron 6 sesiones de fuerza en circuito. En días no continuados y a una intensidad diferente (30%, 40%, 50%, 60%, 70% u 80% de la 15 repetición máxima, 15RM), los sujetos ejecutaron tres vueltas a un mismo circuito de 8 ejercicios. A lo largo de la sesión se tomaron muestras de sangre capilar para el análisis de la concentración de lactato. En el Estudio General, 15 hombres y 14 mujeres estudiantes de la Licenciatura en CCAFD realizaron 3 protocolos de fuerza en circuito, al 70% de la 15 RM y al 70% de la reserva de la frecuencia cardiaca. Cada día ejecutaron un protocolo diferente: Circuito de Máquinas, Circuito de Peso Libre o Circuito Mixto de musculación- aeróbico, completando en cada uno tres vueltas. Durante cada una de las sesiones se extrajeron muestras de sangre venosa para el análisis de la concentración de lactato y del perfil de acilcarnitinas. Los resultados del presente trabajo evidencian que los sujetos portadores del polimorfismo A1470T del MCT1 (genotipos AT y TT) tienen un comportamiento de lactato diferente que los sujetos no portadores (genotipo AA) cuando se someten a diferentes circuitos de fuerza. En el Estudio Piloto los portadores tuvieron mayor pendiente de acumulación de lactato capilar a la intensidad del 80% de la 15RM, mientras que en el Estudio General los sujetos homocigotos para la variante genética (TT) registraron menores concentraciones de lactato venoso que los homocigotos normales (AA) durante el Circuito de Máquinas. No podemos concluir si esta diferencia de resultados se deriva del tipo de sangre analizada (capilar VS. venosa), de la existencia de un efecto umbral para el transportador o de una bidireccionalidad del MCT1, aunque la hipótesis de bidireccionalidad parece la más integradora. En el grupo de mujeres, no se observó un patrón claro de diferencias entre grupos genéticos por lo que no podemos concluir si el polimorfismo tiene efecto o no en este sexo. En el estudio 2 del Estudio General, la inclusión la variante del MCT1 como variable predictora cuando las variables dependientes fueron la máxima concentración de lactato venosa en los tres protocolos en conjunto, o la máxima concentración venosa durante el Circuito de Máquinas, confirma su influencia en los entrenamientos con elevada producción de lactato. No obstante, en los entrenamientos con concentraciones de lactato más bajas, parece que existen factores más determinantes para la máxima concentración que el polimorfismo del MCT1. Por último, los resultados del tercer estudio del Estudio General, aunque preliminares, sugieren que la presencia de las variantes polimórficas del CPT2 podría influir sobre el transporte de los ácidos grasos durante la realización de actividad física, particularmente en hombres. Aún así, son necesarios más estudios para confirmar, especialmente en mujeres, la influencia de ambos polimorfismos en la actividad de la CPTII.
Resumo:
La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.