3 resultados para Transesterification

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PAHs are pollutants of concern since they are known carcinogenic compounds. Their occurrence is mainly related to combustion or pyrolysis of organic matter such as fossil fuels. In the current scenario where biofuels are growingly important, it is also necessary to characterize PAH emissions due to their combustion. There are a number of works concerning PAH emissions from biodiesel combustion in Diesel engines, however, there are few regarding the difference between them depending on the feedstock and type of alcohol used in the transesterification. The authors have processed and characterized biodiesel from several feedstocks (Le. tallow, palm, rapeseed, soy-bean, coconut, peanut and linseed oils) to obtain FAME and FAEE and they have developed a method to measure the PAHs originated during their combustion in a bomb calorimeter. The tests have been carried out under different oxygen pressure conditions, and samples have been c1eaned from the bomb after each one of these tests. The samples have been prepared for GC-MS analysis, where PAH quantities among some other combustion products have been assessed. This work shows statistical relations obtained between the measured amounts of 18 PAHs of concern and the composition (oil and type of alcohol) used to obtain the biodiesel, and also the oxygen pressure during combustion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of biofuels in the aviation sector has economic and environmental benefits. Among the options for the production of renewable jet fuels, hydroprocessed esters and fatty acids (HEFA) have received predominant attention in comparison with fatty acid methyl esters (FAME), which are not approved as additives for jet fuels. However, the presence of oxygen in methyl esters tends to reduce soot emissions and therefore particulate matter emissions. This sooting tendency is quantified in this work with an oxygen-extended sooting index, based on smoke point measurements. Results have shown considerable reduction in the sooting tendency for all biokerosenes (produced by transesterification and eventually distillation) with respect to fossil kerosenes. Among the tested biokerosenes, that made from palm kernel oil was the most effective one, and nondistilled methyl esters (from camelina and linseed oils) showed lower effectiveness than distilled biokerosenes to reduce the sooting tendency. These results may constitute an additional argument for the use of FAME’s as blend components of jet fuels. Other arguments were pointed out in previous publications, but some controversy has aroused over the use of these components. Some of the criticism was based on the fact that the methods used in our previous work are not approved for jet fuels in the standard methods and concluded that the use of FAME in any amount is, thus, inappropriate. However, some of the standard methods are not updated for considering oxygenated components (like the method for obtaining the lower heating value), and others are not precise enough (like the methods for measuring the freezing point), whereas some alternative methods may provide better reproducibility for oxygenated fuels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel is currently produced from a catalytic transesterification reaction of various types of edible and non-edible oil with methanol. The use of waste animal tallow instead of edible oils opens a route to recycle this waste. This material has the advantage of lower costs but the problem of high content of free fatty acids, becoming necessary a pre-esterification reaction that increases the cost of the catalytic process. The production of biodiesel using supercritical alcohols is appropriate for materials with high acidity and water content, therefore the use of this process with animal fat is a promising alternative. Ethanol has been used because it can be produced from biomass via fermentation resulting in a complete renewable biodiesel, instead of methanol that derives from fossil feedstocks. Two different processes have been studied: first, the direct transesterification of animal fat using supercritical ethanol and second a two-step process where the first step is a hydrolysis of the animal fat and the second step is the esterification of the resulting fatty acids. The temperature, the molar ratio ethanol:fat and the time have been modified in the different reactions to study the effect in the final conversion and the degradation of the unsaturated fatty acid esters, main inconvenient of these high temperature and pressure processes.