2 resultados para Transcendental function
em Universidad Politécnica de Madrid
Resumo:
Esta Tesis se centra en el desarrollo de un método para la reconstrucción de bases de datos experimentales incompletas de más de dos dimensiones. Como idea general, consiste en la aplicación iterativa de la descomposición en valores singulares de alto orden sobre la base de datos incompleta. Este nuevo método se inspira en el que ha servido de base para la reconstrucción de huecos en bases de datos bidimensionales inventado por Everson y Sirovich (1995) que a su vez, ha sido mejorado por Beckers y Rixen (2003) y simultáneamente por Venturi y Karniadakis (2004). Además, se ha previsto la adaptación de este nuevo método para tratar el posible ruido característico de bases de datos experimentales y a su vez, bases de datos estructuradas cuya información no forma un hiperrectángulo perfecto. Se usará una base de datos tridimensional de muestra como modelo, obtenida a través de una función transcendental, para calibrar e ilustrar el método. A continuación se detalla un exhaustivo estudio del funcionamiento del método y sus variantes para distintas bases de datos aerodinámicas. En concreto, se usarán tres bases de datos tridimensionales que contienen la distribución de presiones sobre un ala. Una se ha generado a través de un método semi-analítico con la intención de estudiar distintos tipos de discretizaciones espaciales. El resto resultan de dos modelos numéricos calculados en C F D . Por último, el método se aplica a una base de datos experimental de más de tres dimensiones que contiene la medida de fuerzas de una configuración ala de Prandtl obtenida de una campaña de ensayos en túnel de viento, donde se estudiaba un amplio espacio de parámetros geométricos de la configuración que como resultado ha generado una base de datos donde la información está dispersa. ABSTRACT A method based on an iterative application of high order singular value decomposition is derived for the reconstruction of missing data in multidimensional databases. The method is inspired by a seminal gappy reconstruction method for two-dimensional databases invented by Everson and Sirovich (1995) and improved by Beckers and Rixen (2003) and Venturi and Karniadakis (2004). In addition, the method is adapted to treat both noisy and structured-but-nonrectangular databases. The method is calibrated and illustrated using a three-dimensional toy model database that is obtained by discretizing a transcendental function. The performance of the method is tested on three aerodynamic databases for the flow past a wing, one obtained by a semi-analytical method, and two resulting from computational fluid dynamics. The method is finally applied to an experimental database consisting in a non-exhaustive parameter space measurement of forces for a box-wing configuration.
Resumo:
Esta Tesis presenta un nuevo método para filtrar errores en bases de datos multidimensionales. Este método no precisa ninguna información a priori sobre la naturaleza de los errores. En concreto, los errrores no deben ser necesariamente pequeños, ni de distribución aleatoria ni tener media cero. El único requerimiento es que no estén correlados con la información limpia propia de la base de datos. Este nuevo método se basa en una extensión mejorada del método básico de reconstrucción de huecos (capaz de reconstruir la información que falta de una base de datos multidimensional en posiciones conocidas) inventado por Everson y Sirovich (1995). El método de reconstrucción de huecos mejorado ha evolucionado como un método de filtrado de errores de dos pasos: en primer lugar, (a) identifica las posiciones en la base de datos afectadas por los errores y después, (b) reconstruye la información en dichas posiciones tratando la información de éstas como información desconocida. El método resultante filtra errores O(1) de forma eficiente, tanto si son errores aleatorios como sistemáticos e incluso si su distribución en la base de datos está concentrada o esparcida por ella. Primero, se ilustra el funcionamiento delmétodo con una base de datosmodelo bidimensional, que resulta de la dicretización de una función transcendental. Posteriormente, se presentan algunos casos prácticos de aplicación del método a dos bases de datos tridimensionales aerodinámicas que contienen la distribución de presiones sobre un ala a varios ángulos de ataque. Estas bases de datos resultan de modelos numéricos calculados en CFD. ABSTRACT A method is presented to filter errors out in multidimensional databases. The method does not require any a priori information about the nature the errors. In particular, the errors need not to be small, neither random, nor exhibit zero mean. Instead, they are only required to be relatively uncorrelated to the clean information contained in the database. The method is based on an improved extension of a seminal iterative gappy reconstruction method (able to reconstruct lost information at known positions in the database) due to Everson and Sirovich (1995). The improved gappy reconstruction method is evolved as an error filtering method in two steps, since it is adapted to first (a) identify the error locations in the database and then (b) reconstruct the information in these locations by treating the associated data as gappy data. The resultingmethod filters out O(1) errors in an efficient fashion, both when these are random and when they are systematic, and also both when they concentrated and when they are spread along the database. The performance of the method is first illustrated using a two-dimensional toymodel database resulting fromdiscretizing a transcendental function and then tested on two CFD-calculated, three-dimensional aerodynamic databases containing the pressure coefficient on the surface of a wing for varying values of the angle of attack. A more general performance analysis of the method is presented with the intention of quantifying the randomness factor the method admits maintaining a correct performance and secondly, quantifying the size of error the method can detect. Lastly, some improvements of the method are proposed with their respective verification.