5 resultados para Tramp ants
em Universidad Politécnica de Madrid
Resumo:
Industrial applications of computer vision sometimes require detection of atypical objects that occur as small groups of pixels in digital images. These objects are difficult to single out because they are small and randomly distributed. In this work we propose an image segmentation method using the novel Ant System-based Clustering Algorithm (ASCA). ASCA models the foraging behaviour of ants, which move through the data space searching for high data-density regions, and leave pheromone trails on their path. The pheromone map is used to identify the exact number of clusters, and assign the pixels to these clusters using the pheromone gradient. We applied ASCA to detection of microcalcifications in digital mammograms and compared its performance with state-of-the-art clustering algorithms such as 1D Self-Organizing Map, k-Means, Fuzzy c-Means and Possibilistic Fuzzy c-Means. The main advantage of ASCA is that the number of clusters needs not to be known a priori. The experimental results show that ASCA is more efficient than the other algorithms in detecting small clusters of atypical data.
Resumo:
This paper presents an ant colony optimization algorithm to sequence the mixed assembly lines considering the inventory and the replenishment of components. This is a NP-problem that cannot be solved to optimality by exact methods when the size of the problem growth. Groups of specialized ants are implemented to solve the different parts of the problem. This is intended to differentiate each part of the problem. Different types of pheromone structures are created to identify good car sequences, and good routes for the replenishment of components vehicle. The contribution of this paper is the collaborative approach of the ACO for the mixed assembly line and the replenishment of components and the jointly solution of the problem.
Resumo:
One of the main problems relief teams face after a natural or man-made disaster is how to plan rural road repair work tasks to take maximum advantage of the limited available financial and human resources. Previous research focused on speeding up repair work or on selecting the location of health centers to minimize transport times for injured citizens. In spite of the good results, this research does not take into account another key factor: survivor accessibility to resources. In this paper we account for the accessibility issue, that is, we maximize the number of survivors that reach the nearest regional center (cities where economic and social activity is concentrated) in a minimum time by planning which rural roads should be repaired given the available financial and human resources. This is a combinatorial problem since the number of connections between cities and regional centers grows exponentially with the problem size, and exact methods are no good for achieving an optimum solution. In order to solve the problem we propose using an Ant Colony System adaptation, which is based on ants? foraging behavior. Ants stochastically build minimal paths to regional centers and decide if damaged roads are repaired on the basis of pheromone levels, accessibility heuristic information and the available budget. The proposed algorithm is illustrated by means of an example regarding the 2010 Haiti earthquake, and its performance is compared with another metaheuristic, GRASP.
Resumo:
A pesar de los avances en materia de predicción, los desastres naturales siguen teniendo consecuencias devastadoras. Entre los principales problemas a los que se enfrentan los equipos de ayuda y rescate después de un desastre natural o provocado por el hombre se encuentra la planificación de las tareas de reparación de carreteras para conseguir la máxima ventaja de los limitados recursos económicos y humanos. En la presente Tesis Fin de Máster se intenta dar solución al problema de la accesibilidad, es decir, maximizar el número de supervivientes que consiguen alcanzar el centro regional más cercano en un tiempo mínimo mediante la planificación de qué carreteras rurales deberían ser reparadas dados unos recursos económicos y humanos limitados. Como se puede observar, es un problema combinatorio ya que el número de planes de reparación y conexiones entre las ciudades y los centros regionales crece de forma exponencial con el tamaño del problema. Para la resolución del problema se comienza analizando una adaptación básica de los sistemas de colonias de hormigas propuesta por otro autor y se proponen múltiples mejoras sobre la misma. Posteriormente, se propone una nueva adaptación más avanzada de los sistemas de colonias de hormiga al problema, el ACS con doble hormiga. Este sistema hace uso de dos tipos distintos de hormigas, la exploradora y la trabajadora, para resolver simultáneamente el problema de encontrar los caminos más rápidos desde cada ciudad a su centro regional más cercano (exploradora), y el de obtener el plan óptimo de reparación que maximice la accesibilidad de la red (trabajadora). El algoritmo propuesto se ilustra por medio de un ejemplo de gran tamaño que simula el desastre natural ocurrido en Haití, y su rendimiento es comparado con la combinación de dos metaheurísticas, GRASP y VNS.---ABSTRACT---In spite of the advances in forecasting, natural disaster continue to ocasionate devastating consequences. One of the main problems relief teams face after a natural or man-made disaster is how to plan rural road repair work to take maximum advantage of the limited available financial and human resources. In this Master´s Final Project we account for the accesability issue, that is, to maximize the number of survivors that reach the nearest regional center in a minimum time by planning whic rural roads should be repaired given the limited financial and human resources. This is a combinatorial problem since the number of possible repairing solutions and connections between cities and regional centers grows exponentially with the size of the problem. In order to solve the problem, we analyze the basic ant colony system adaptation proposed by another author and point out multiple improvements on it. Then, we propose a novel and more advance adaptation of the ant colony systems to the problem, the double- ant ACS. This system makes use of two diferent type of ants, the explorer and the worker, to simultaneously solve the problem of finding the shorthest paths from each city to their nearest regional center (explorer), and the problem of identifying the optimal repairing plan that maximize the network accesability (worker). The proposed algorithm is illustrated by means of a big size example that simulates the natural disaster occurred in Haiti, and its performance is compared with a combination of two metaheuristics, GRASP and VNS.
Resumo:
In this thesis we will discuss the setting of the parameters of the Max-Min Ant System. In the literature it is possible to find theoretical and practical considerations of these parameters, nevertheless it seems that they have not been studied in a joint manner. We propose a theoretical study of the relationship between them, giving the user some further knowledge at the time of setting the algorithm's parameters and some new idea are proposed. In particular, the number of ants is studied in more detail. Then we will study the settings of the Tmax and Tmin in a way which is diferent from the most commonly used technique, taking in consideration theoretical as well as experimental problems. Finally, some experiments are shown that demonstrate the validity of our proposals.