3 resultados para Traction systems
em Universidad Politécnica de Madrid
Resumo:
Overhead rigid conductor arrangements for current collection for railway traction have some advantages compared to other, more conventional, energy supply systems. They are simple, robust and easily maintained, not to mention their flexibility as to the required height for installation, which makes them particularly suitable for use in subway infrastructures. Nevertheless, due to the increasing speeds of new vehicles running on modern subway lines, a more efficient design is required for this kind of system. In this paper, the authors present a dynamic analysis of overhead conductor rail systems focused on the design of a new conductor profile with a dynamic behaviour superior to that of the system currently in use. This means that either an increase in running speed can be attained, which at present does not exceed 110 km/h, or an increase in the distance between the rigid catenary supports with the ensuing saving in installation costs. This study has been carried out using simulation techniques. The ANSYS programme has been used for the finite element modelling and the SIMPACK programme for the elastic multibody systems analysis.
Resumo:
Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems. ©2011 by the authors.
Resumo:
Electric vehicles constitute a multidisciplinary subject that involves disciplines such as automotive, mechanical, electrical and control engineering. Due to this multidisciplinary technical nature, practical teaching methodologies are of special relevance. Paradoxically, in the past, the training of engineers specializing in this area has lacked the practical component represented by field tests, due to the difficulty of accessing real systems. This paper presents an educational project specifically designed for the teaching and training of engineering students with different backgrounds and experience. The teaching methodology focuses on the topology of electric traction drives and their control. It includes two stages, a simulation computer model and a scaled laboratory workbench that comprises a traction electrical drive coupled to a vehicle emulator. With this equipment, the effectiveness of different traction control strategies can be analyzed from the point of view of energy efficiency, robustness, easiness of implementation and acoustic noise.