9 resultados para Trace semantics

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study states the potential trace elements (TE’s) content of red soils located at the centre region of Spain, characterized by low rainfall and slight acidity over prolonged weathering periods. For this purpose, three soil profiles from a catena were described, sampled and analyzed. The most notable characteristics are the low organic matter content and the predominantly acidic pH. Illite and kaolinite are the predominant clay minerals. The fertility of the soils is sufficient to provide most of the nutrients required, with very suitable potassium levels. The geochemical characters of this soil are: only few elements remain almost invariable across the profiles and over time, however the majority of them were directly linked with the clay content. These soils are characterized by relatively low levels of some trace elements such as Sr (64.35 mg?kg–1), Ba (303.67 mg?kg–1) and Sc (13.14 mg?kg–1); high levels of other trace elements such as V (103.92 mg?kg–1), Cr (79.9 mg?kg–1), Cu (15.18 mg?kg–1), Hf (10.26 mg?kg–1), Ni (38 mg?kg–1) and Zr (337 mg?kg–1); while the levels for rare earth elements (REE’s) such as La (48.36 mg?kg–1), Ce (95.07 mg?kg–1), Th (13.33 mg?kg–1) and Nd (42.65 mg?kg–1) are significantly high. The distribution of mayor and trace elements was directly re- lated to weathering processes, parent material and anthropogenic activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total of 32 samples of surficial soil were collected from 16 playground areas in Madrid (Spain), in order to investigate the importance of the geochemistry of the soil on subsequent bioaccessibility of trace elements. The in vitro bioaccessibility of As, Co, Cr, Cu, Ni, Pb and Zn was evaluated by means of two extraction processes that simulate the gastric environment and one that reproduces a gastric + intestinal digestion sequence. The results of the in vitro bioaccessibility were compared against aqua regia extractions (“total” concentration), and it was found that total concentrations of As, Cu, Pb and Zn were double those of bioaccessible values, whilst that of Cr was ten times higher. Whereas the results of the gastric + intestinal extraction were affected by a high uncertainty, both gastric methods offered very similar and consistent results, with bioaccessibilities following the order: As = Cu = Pb = Zn > Co > Ni > Cr, and ranging from 63 to 7 %. Selected soil properties including pH, organic matter, Fe and CaCO3 content were determined to assess their influence on trace element bioaccessibility, and it was found that Cu, Pb and Zn were predominantly bound to organic matter and, to a lesser extent, Fe oxides. The former fraction was readily accessible in the gastric solution, whereas Fe oxides seemed to recapture negatively charged chloride complexes of these elements in the gastric solution, lowering their bioaccessibility. The homogeneous pH of the playground soils included in the study does not influence trace element bioaccessibility to any significant extent except for Cr, where the very low gastric accessibility seems to be related to the strongly pH-dependent formation of complexes with organic matter. The results for As, which have been previously described and discussed in detail in Mingot et al. (Chemosphere 84: 1386–1391, 2011), indicate a high gastric bioaccessibility for this element as a consequence of its strong association with calcium carbonate and the ease with which these bonds are broken in the gastric solution. The calculation of risk assessments are therefore dependant on the methodology used and the specific environment they address. This has impacts on management strategies formulated to ensure that the most vulnerable of society, children, can live and play without adverse consequences to their health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the evolution, state of the art and future lines of research on the sources, transport pathways, and sinks of particulate trace elements in urban terrestrial environments to include the atmosphere, soils, and street and indoor dusts. Such studies reveal reductions in the emissions of some elements of historical concern such as Pb, with interest consequently focusing on other toxic trace elements such as As, Cd, Hg, Zn, and Cu. While establishment of levels of these elements is important in assessing the potential impacts of human society on the urban environment, it is also necessary to apply this knowledge in conjunction with information on the toxicity of those trace elements and the degree of exposure of human receptors to an assessment of whether such contamination represents a real risk to the city’s inhabitants and therefore how this risk can be addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A geochemical model of an urban environment is presented in which multielemental tracers are used to characterise the circulation of trace elements in particulate matter_atmospheric aerosol, street dust and urban soil, within a city.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elemental composition, patterns of distribution and possible sources of street dust are not common to all urban environments, but vary according to the peculiarities of each city. The common features and dissimilarities in the origin and nature of street dust were investigated through a series of studies in two widely different cities, Madrid (Spain) and Oslo (Norway), between 1990 and 1994. The most comprehensive sampling campaign was carried out in the Norwegian capital during the summer of 1994. An area of 14 km2, covering most of downtown Oslo and some residential districts to the north of the city, was divided into 1 km2 mapping units, and 16 sampling increments of approximately 150 g were collected from streets and roads in each of them. The fraction below 100 μm was acid-digested and analysed by ICP-MS. Statistical analyses of the results suggest that chemical elements in street dust can be classified into three groups: “urban” elements (Ba, Cd, Co, Cu, Mg, Pb, Sb, Ti, Zn), “natural” elements (Al, Ga, La, Mn, Na, Sr, Th, Y) and elements of a mixed origin or which have undergone geochemical changes from their original sources (Ca, Cs, Fe, Mo, Ni, Rb, Sr, U). Soil resuspension and/or mobilisation appears to be the most important source of “natural” elements, while “urban” elements originate primarily from traffic and from the weathering and corrosion of building materials. The data for Pb seem to prove that the gradual shift from leaded to unleaded petrol as fuel for automobiles has resulted in an almost proportional reduction in the concentration of Pb in dust particles under 100 μm. This fact and the spatial distribution of Pb in the city strongly suggest that lead sources other than traffic (i.e. lead accumulated in urban soil over the years) may contribute as much lead, if not more, to urban street dust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR) can lead to an atmospheric release bypassing the containment via the secondary system and exiting though the Pressurized Operating Relief Valves of the affected Steam Generator. That is why SGTR historically have been treated in a special way in the different Deterministic Safety Analysis (DSA), focusing on the radioactive release more than the possibility of core damage, as it is done in the other Loss of Coolant Accidents(LOCAs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steam Generator Tube Rupture (SGTR) sequences in Pressurized Water Reactors are known to be one of the most demanding transients for the operating crew. SGTR are a special kind of transient as they could lead to radiological releases without core damage or containment failure, as they can constitute a direct path from the reactor coolant system to the environment. The first methodology used to perform the Deterministic Safety Analysis (DSA) of a SGTR did not credit the operator action for the first 30 min of the transient, assuming that the operating crew was able to stop the primary to secondary leakage within that period of time. However, the different real SGTR accident cases happened in the USA and over the world demonstrated that the operators usually take more than 30 min to stop the leakage in actual sequences. Some methodologies were raised to overcome that fact, considering operator actions from the beginning of the transient, as it is done in Probabilistic Safety Analysis. This paper presents the results of comparing different assumptions regarding the single failure criteria and the operator action taken from the most common methodologies included in the different Deterministic Safety Analysis. One single failure criteria that has not been analysed previously in the literature is proposed and analysed in this paper too. The comparison is done with a PWR Westinghouse three loop model in TRACE code (Almaraz NPP) with best estimate assumptions but including deterministic hypothesis such as single failure criteria or loss of offsite power. The behaviour of the reactor is quite diverse depending on the different assumptions made regarding the operator actions. On the other hand, although there are high conservatisms included in the hypothesis, as the single failure criteria, all the results are quite far from the regulatory limits. In addition, some improvements to the Emergency Operating Procedures to minimize the offsite release from the damaged SG in case of a SGTR are outlined taking into account the offsite dose sensitivity results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive spatial and temporal surveys, over 15 years, have been conducted in soil in urban parks and street dusts in one of the most polluted cities in western Europe, Avilés (NW Spain). The first survey was carried out in 1996, and since then monitoring has been undertaken every five years. Whilst the sampling site is a relatively small town, industrial activities (mainly the steel industry and Zn and Al metallurgy) and other less significant urban sources, such as traffic, strongly affect the load of heavy metals in the urban aerosol. Elemental tracers have been used to characterise the influence of these sources on the composition of soil and dust. Although PM10 has decreased over these years as a result of environmental measures undertaken in the city, some of the “industrial” elements still remain in concentrations of concern for example, up to 4.6% and 0.5% of Zn in dust and soil, respectively. Spatial trends in metals such as Zn and Cd clearly reflect sources from the processing industries. The concentrations of these elements across Europe have reduced over time, however the most recent results from Avilés revealed an upward trend in concentration for Zn, Cd, Hg and As. A risk assessment of the soil highlighted As as an element of concern since its cancer risk in adults was more than double the value above which regulatory agencies deem it to be unacceptable. If children were considered to be the receptors, then the risk nearly doubles from this element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After 14 years under conventional plough tillage (CT) or conservation minimum tillage (MT), the soil available Al, Fe, Mn, Cu and Zn (0-5, 5-15 and 15-30 cm layers) and their plant uptake were evaluated during two years in a ryegrass-maize forage rotation in NW Spain (t emperate-humid region). The three-way ANOVA showed that trace element concentrations in soil were mainly influenced by sampling date, followed by soil depth and tillage system (35-73 %, 7-58 % and 3- 11 % of variance explained, respectively). Excepting for Fe (CT) and Al (CT and MT), the elemental concentrations decreased with depth, the stratification being stronger under MT. For soil available Al, Fe, Mn and Cu, the concentrations were higher in CT than in MT (5-15 and 15-30 cm layers) or were not affected by tillage system (0-5 cm). In contrast, the available Zn contents were higher in MT than CT at the soil surface and did not differ in deeper layers. The concentration of Al, Fe and Cu in crops were not influenced by tillage system, which explain 22 % of Mn variance in maize (CT > MT in the more humid year) and 18 % of Zn variance in ryegrass (MT > CT in both years). However, in the summer crop (maize) the concentrations of Fe, Mn and Zn tended to be higher in MT than in CT under drought conditions, while the opposite was true in the year without water limitation. Therefore, under the studied conditions of climate, soil, tillage and crop rotation, little influence of tillage system on crop nutritive value would be expected. To minimize the potential deficiency of Zn (maize) and Cu (maize and ryegrass) on crop yields the inclusion of these micro-nutrients in fertilization schedule is reco mmended, as well as liming to alleviate Al toxicity on maize crops.