2 resultados para Total load
em Universidad Politécnica de Madrid
Resumo:
Existe normalmente el propósito de obtener la mejor solución posible cuando se plantea un problema estructural, entendiendo como mejor la solución que cumpliendo los requisitos estructurales, de uso, etc., tiene un coste físico menor. En una primera aproximación se puede representar el coste físico por medio del peso propio de la estructura, lo que permite plantear la búsqueda de la mejor solución como la de menor peso. Desde un punto de vista práctico, la obtención de buenas soluciones—es decir, soluciones cuyo coste sea solo ligeramente mayor que el de la mejor solución— es una tarea tan importante como la obtención de óptimos absolutos, algo en general difícilmente abordable. Para disponer de una medida de la eficiencia que haga posible la comparación entre soluciones se propone la siguiente definición de rendimiento estructural: la razón entre la carga útil que hay que soportar y la carga total que hay que contabilizar (la suma de la carga útil y el peso propio). La forma estructural puede considerarse compuesta por cuatro conceptos, que junto con el material, definen una estructura: tamaño, esquema, proporción, y grueso.Galileo (1638) propuso la existencia de un tamaño insuperable para cada problema estructural— el tamaño para el que el peso propio agota una estructura para un esquema y proporción dados—. Dicho tamaño, o alcance estructural, será distinto para cada material utilizado; la única información necesaria del material para su determinación es la razón entre su resistencia y su peso especifico, una magnitud a la que denominamos alcance del material. En estructuras de tamaño muy pequeño en relación con su alcance estructural la anterior definición de rendimiento es inútil. En este caso —estructuras de “talla nula” en las que el peso propio es despreciable frente a la carga útil— se propone como medida del coste la magnitud adimensional que denominamos número de Michell, que se deriva de la “cantidad” introducida por A. G. M. Michell en su artículo seminal de 1904, desarrollado a partir de un lema de J. C. Maxwell de 1870. A finales del siglo pasado, R. Aroca combino las teorías de Galileo y de Maxwell y Michell, proponiendo una regla de diseño de fácil aplicación (regla GA), que permite la estimación del alcance y del rendimiento de una forma estructural. En el presente trabajo se estudia la eficiencia de estructuras trianguladas en problemas estructurales de flexión, teniendo en cuenta la influencia del tamaño. Por un lado, en el caso de estructuras de tamaño nulo se exploran esquemas cercanos al optimo mediante diversos métodos de minoración, con el objetivo de obtener formas cuyo coste (medido con su numero deMichell) sea muy próximo al del optimo absoluto pero obteniendo una reducción importante de su complejidad. Por otro lado, se presenta un método para determinar el alcance estructural de estructuras trianguladas (teniendo en cuenta el efecto local de las flexiones en los elementos de dichas estructuras), comparando su resultado con el obtenido al aplicar la regla GA, mostrando las condiciones en las que es de aplicación. Por último se identifican las líneas de investigación futura: la medida de la complejidad; la contabilidad del coste de las cimentaciones y la extensión de los métodos de minoración cuando se tiene en cuenta el peso propio. ABSTRACT When a structural problem is posed, the intention is usually to obtain the best solution, understanding this as the solution that fulfilling the different requirements: structural, use, etc., has the lowest physical cost. In a first approximation, the physical cost can be represented by the self-weight of the structure; this allows to consider the search of the best solution as the one with the lowest self-weight. But, from a practical point of view, obtaining good solutions—i.e. solutions with higher although comparable physical cost than the optimum— can be as important as finding the optimal ones, because this is, generally, a not affordable task. In order to have a measure of the efficiency that allows the comparison between different solutions, a definition of structural efficiency is proposed: the ratio between the useful load and the total load —i.e. the useful load plus the self-weight resulting of the structural sizing—. The structural form can be considered to be formed by four concepts, which together with its material, completely define a particular structure. These are: Size, Schema, Slenderness or Proportion, and Thickness. Galileo (1638) postulated the existence of an insurmountable size for structural problems—the size for which a structure with a given schema and a given slenderness, is only able to resist its self-weight—. Such size, or structural scope will be different for every different used material; the only needed information about the material to determine such size is the ratio between its allowable stress and its specific weight: a characteristic length that we name material structural scope. The definition of efficiency given above is not useful for structures that have a small size in comparison with the insurmountable size. In this case—structures with null size, inwhich the self-weight is negligible in comparisonwith the useful load—we use as measure of the cost the dimensionless magnitude that we call Michell’s number, an amount derived from the “quantity” introduced by A. G. M. Michell in his seminal article published in 1904, developed out of a result from J. C.Maxwell of 1870. R. Aroca joined the theories of Galileo and the theories of Maxwell and Michell, obtaining some design rules of direct application (that we denominate “GA rule”), that allow the estimation of the structural scope and the efficiency of a structural schema. In this work the efficiency of truss-like structures resolving bending problems is studied, taking into consideration the influence of the size. On the one hand, in the case of structures with null size, near-optimal layouts are explored using several minimization methods, in order to obtain forms with cost near to the absolute optimum but with a significant reduction of the complexity. On the other hand, a method for the determination of the insurmountable size for truss-like structures is shown, having into account local bending effects. The results are checked with the GA rule, showing the conditions in which it is applicable. Finally, some directions for future research are proposed: the measure of the complexity, the cost of foundations and the extension of optimization methods having into account the self-weight.
Resumo:
With the advent of cloud computing model, distributed caches have become the cornerstone for building scalable applications. Popular systems like Facebook [1] or Twitter use Memcached [5], a highly scalable distributed object cache, to speed up applications by avoiding database accesses. Distributed object caches assign objects to cache instances based on a hashing function, and objects are not moved from a cache instance to another unless more instances are added to the cache and objects are redistributed. This may lead to situations where some cache instances are overloaded when some of the objects they store are frequently accessed, while other cache instances are less frequently used. In this paper we propose a multi-resource load balancing algorithm for distributed cache systems. The algorithm aims at balancing both CPU and Memory resources among cache instances by redistributing stored data. Considering the possible conflict of balancing multiple resources at the same time, we give CPU and Memory resources weighted priorities based on the runtime load distributions. A scarcer resource is given a higher weight than a less scarce resource when load balancing. The system imbalance degree is evaluated based on monitoring information, and the utility load of a node, a unit for resource consumption. Besides, since continuous rebalance of the system may affect the QoS of applications utilizing the cache system, our data selection policy ensures that each data migration minimizes the system imbalance degree and hence, the total reconfiguration cost can be minimized. An extensive simulation is conducted to compare our policy with other policies. Our policy shows a significant improvement in time efficiency and decrease in reconfiguration cost.