2 resultados para Tomografías

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta Tesis Doctoral se aborda la utilización de filtros de difusión no lineal para obtener imágenes constantes a trozos como paso previo al proceso de segmentación. En una primera parte se propone un formulación intrínseca para la ecuación de difusión no lineal que proporcione las condiciones de diseño necesarias sobre los filtros de difusión. A partir del marco teórico propuesto, se proporciona una nueva familia de difusividades; éstas son obtenidas a partir de técnicas de difusión no lineal relacionadas con los procesos de difusión regresivos. El objetivo es descomponer la imagen en regiones cerradas que sean homogéneas en sus niveles de grises sin contornos difusos. Asimismo, se prueba que la función de difusividad propuesta satisface las condiciones de un correcto planteamiento semi-discreto. Esto muestra que mediante el esquema semi-implícito habitualmente utilizado, realmente se hace un proceso de difusión no lineal directa, en lugar de difusión inversa, conectando con proceso de preservación de bordes. Bajo estas condiciones establecidas, se plantea un criterio de parada para el proceso de difusión, para obtener imágenes constantes a trozos con un bajo coste computacional. Una vez aplicado todo el proceso al caso unidimensional, se extienden los resultados teóricos, al caso de imágenes en 2D y 3D. Para el caso en 3D, se detalla el esquema numérico para el problema evolutivo no lineal, con condiciones de contorno Neumann homogéneas. Finalmente, se prueba el filtro propuesto para imágenes reales en 2D y 3D y se ilustran los resultados de la difusividad propuesta como método para obtener imágenes constantes a trozos. En el caso de imágenes 3D, se aborda la problemática del proceso previo a la segmentación del hígado, mediante imágenes reales provenientes de Tomografías Axiales Computarizadas (TAC). En ese caso, se obtienen resultados sobre la estimación de los parámetros de la función de difusividad propuesta. This Ph.D. Thesis deals with the case of using nonlinear diffusion filters to obtain piecewise constant images as a previous process for segmentation techniques. I have first shown an intrinsic formulation for the nonlinear diffusion equation to provide some design conditions on the diffusion filters. According to this theoretical framework, I have proposed a new family of diffusivities; they are obtained from nonlinear diffusion techniques and are related with backward diffusion. Their goal is to split the image in closed contours with a homogenized grey intensity inside and with no blurred edges. It has also proved that the proposed filters satisfy the well-posedness semi-discrete and full discrete scale-space requirements. This shows that by using semi-implicit schemes, a forward nonlinear diffusion equation is solved, instead of a backward nonlinear diffusion equation, connecting with an edgepreserving process. Under the conditions established for the diffusivity and using a stopping criterion I for the diffusion time, I have obtained piecewise constant images with a low computational effort. The whole process in the one-dimensional case is extended to the case where 2D and 3D theoretical results are applied to real images. For 3D, develops in detail the numerical scheme for nonlinear evolutionary problem with homogeneous Neumann boundary conditions. Finally, I have tested the proposed filter with real images for 2D and 3D and I have illustrated the effects of the proposed diffusivity function as a method to get piecewise constant images. For 3D I have developed a preprocess for liver segmentation with real images from CT (Computerized Tomography). In this case, I have obtained results on the estimation of the parameters of the given diffusivity function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este proyecto se ha desarrollado un código de MATLAB para el procesamiento de imágenes tomográficas 3D, de muestras de asfalto de carreteras en Polonia. Estas imágenes en 3D han sido tomadas por un equipo de investigación de la Universidad Tecnológica de Lodz (LUT). El objetivo de este proyecto es crear una herramienta que se pueda utilizar para estudiar las diferentes muestras de asfalto 3D y pueda servir para estudiar las pruebas de estrés que experimentan las muestras en el laboratorio. Con el objetivo final de encontrar soluciones a la degradación sufrida en las carreteras de Polonia, debido a diferentes causas, como son las condiciones meteorológicas. La degradación de las carreteras es un tema que se ha investigado desde hace muchos años, debido a la fuerte degradación causada por diferentes factores como son climáticos, la falta de mantenimiento o el tráfico excesivo en algunos casos. Es en Polonia, donde estos tres factores hacen que la composición de muchas carreteras se degrade rápidamente, sobre todo debido a las condiciones meteorológicas sufridas a lo largo del año, con temperaturas que van desde 30° C en verano a -20° C en invierno. Esto hace que la composición de las carreteras sufra mucho y el asfalto se levante, lo que aumenta los costos de mantenimiento y los accidentes de carretera. Este proyecto parte de la base de investigación que se lleva a cabo en la LUT, tratando de mejorar el análisis de las muestras de asfalto, por lo que se realizarán las pruebas de estrés y encontrar soluciones para mejorar el asfalto en las carreteras polacas. Esto disminuiría notablemente el costo de mantenimiento. A pesar de no entrar en aspectos muy técnicos sobre el asfalto y su composición, se ha necesitado realizar un estudio profundo sobre todas sus características, para crear un código capaz de obtener los mejores resultados. Por estas razones, se ha desarrollado en Matlab, los algoritmos que permiten el estudio de los especímenes 3D de asfalto. Se ha utilizado este software, ya que Matlab es una poderosa herramienta matemática que permite operar con matrices para realización de operaciones rápidamente, permitiendo desarrollar un código específico para el tratamiento y procesamiento de imágenes en 3D. Gracias a esta herramienta, estos algoritmos realizan procesos tales como, la segmentación de la imagen 3D, pre y post procesamiento de la imagen, filtrado o todo tipo de análisis microestructural de las muestras de asfalto que se están estudiando. El código presentado para la segmentación de las muestras de asfalto 3D es menos complejo en su diseño y desarrollo, debido a las herramientas de procesamiento de imágenes que incluye Matlab, que facilitan significativamente la tarea de programación, así como el método de segmentación utilizado. Respecto al código, este ha sido diseñado teniendo en cuenta el objetivo de facilitar el trabajo de análisis y estudio de las imágenes en 3D de las muestras de asfalto. Por lo tanto, el principal objetivo es el de crear una herramienta para el estudio de este código, por ello fue desarrollado para que pueda ser integrado en un entorno visual, de manera que sea más fácil y simple su utilización. Ese es el motivo por el cual todos estos algoritmos y funciones, que ha sido desarrolladas, se integrarán en una herramienta visual que se ha desarrollado con el GUIDE de Matlab. Esta herramienta ha sido creada en colaboración con Jorge Vega, y fue desarrollada en su proyecto final de carrera, cuyo título es: Segmentación microestructural de Imágenes en 3D de la muestra de asfalto utilizando Matlab. En esta herramienta se ha utilizado todo las funciones programadas en este proyecto, y tiene el objetivo de desarrollar una herramienta que permita crear un entorno gráfico intuitivo y de fácil uso para el estudio de las muestras de 3D de asfalto. Este proyecto se ha dividido en 4 capítulos, en un primer lugar estará la introducción, donde se presentarán los aspectos más importante que se va a componer el proyecto. En el segundo capítulo se presentarán todos los datos técnicos que se han tenido que estudiar para desarrollar la herramienta, entre los que cabe los tres temas más importantes que se han estudiado en este proyecto: materiales asfálticos, los principios de la tomografías 3D y el procesamiento de imágenes. Esta será la base para el tercer capítulo, que expondrá la metodología utilizada en la elaboración del código, con la explicación del entorno de trabajo utilizado en Matlab y todas las funciones de procesamiento de imágenes utilizadas. Además, se muestra todo el código desarrollado, así como una descripción teórica de los métodos utilizados para el pre-procesamiento y segmentación de las imagenes en 3D. En el capítulo 4, se mostrarán los resultados obtenidos en el estudio de una de las muestras de asfalto, y, finalmente, el último capítulo se basa en las conclusiones sobre el desarrollo de este proyecto. En este proyecto se ha llevado han realizado todos los puntos que se establecieron como punto de partida en el anteproyecto para crear la herramienta, a pesar de que se ha dejado para futuros proyectos nuevas posibilidades de este codigo, como por ejemplo, la detección automática de las diferentes regiones de una muestra de asfalto debido a su composición. Como se muestra en este proyecto, las técnicas de procesamiento de imágenes se utilizan cada vez más en multitud áreas, como pueden ser industriales o médicas. En consecuencia, este tipo de proyecto tiene multitud de posibilidades, y pudiendo ser la base para muchas nuevas aplicaciones que se puedan desarrollar en un futuro. Por último, se concluye que este proyecto ha contribuido a fortalecer las habilidades de programación, ampliando el conocimiento de Matlab y de la teoría de procesamiento de imágenes. Del mismo modo, este trabajo proporciona una base para el desarrollo de un proyecto más amplio cuyo alcance será una herramienta que puedas ser utilizada por el equipo de investigación de la Universidad Tecnológica de Lodz y en futuros proyectos. ABSTRACT In this project has been developed one code in MATLAB to process X-ray tomographic 3D images of asphalt specimens. These images 3D has been taken by a research team of the Lodz University of Technology (LUT). The aim of this project is to create a tool that can be used to study differents asphalt specimen and can be used to study them after stress tests undergoing the samples. With the final goal to find solutions to the degradation suffered roads in Poland due to differents causes, like weather conditions. The degradation of the roads is an issue that has been investigated many years ago, due to strong degradation suffered caused by various factors such as climate, poor maintenance or excessive traffic in some cases. It is in Poland where these three factors make the composition of many roads degrade rapidly, especially due to the weather conditions suffered along the year, with temperatures ranging from 30 o C in summer to -20 ° C in winter. This causes the roads suffers a lot and asphalt rises shortly after putting, increasing maintenance costs and road accident. This project part of the base that research is taking place at the LUT, in order to better analyze the asphalt specimens, they are tested for stress and find solutions to improve the asphalt on Polish roads. This would decrease remarkable maintenance cost. Although this project will not go into the technical aspect as asphalt and composition, but it has been required a deep study about all of its features, to create a code able to obtain the best results. For these reasons, there have been developed in Matlab, algorithms that allow the study of 3D specimens of asphalt. Matlab is a powerful mathematical tool, which allows arrays operate fastly, allowing to develop specific code for the treatment and processing of 3D images. Thus, these algorithms perform processes such as the multidimensional matrix sgementation, pre and post processing with the same filtering algorithms or microstructural analysis of asphalt specimen which being studied. All these algorithms and function that has been developed to be integrated into a visual tool which it be developed with the GUIDE of Matlab. This tool has been created in the project of Jorge Vega which name is: Microstructural segmentation of 3D images of asphalt specimen using Matlab engine. In this tool it has been used all the functions programmed in this project, and it has the aim to develop an easy and intuitive graphical environment for the study of 3D samples of asphalt. This project has been divided into 4 chapters plus the introduction, the second chapter introduces the state-of-the-art of the three of the most important topics that have been studied in this project: asphalt materials, principle of X-ray tomography and image processing. This will be the base for the third chapter, which will outline the methodology used in developing the code, explaining the working environment of Matlab and all the functions of processing images used. In addition, it will be shown all the developed code created, as well as a theoretical description of the methods used for preprocessing and 3D image segmentation. In Chapter 4 is shown the results obtained from the study of one of the specimens of asphalt, and finally the last chapter draws the conclusions regarding the development of this project.