2 resultados para Tilapia.

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mites as parasites infesting fish have been described in a few case reports involving Histiostoma anguillarum, H. papillata, and Schwiebea estradai. We describe the unexpected occurrence of oribatid mites of the genus Trhypochthoniellus on farmed tilapia Oreochromis niloticus. The fish had mites on the skin, fins, and gills, as well as in the mouth. The morphological characteristics of the mites, observed by optical and scanning electron microscopy, were consistent with those described for T. longisetus longisetus. All stages of development were observed, suggesting that the mites were able to actively reproduce on fish

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by fish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for fish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC25, HCO3 – , Cl – , NH4 + , NO2 – , NO3 – , H2PO4 – , SO4 2– , Na + , K+ , Ca 2+ and Mg 2+ build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO3 - , followed, in decreasing order, by Ca 2+ , H2PO4 – , K+ , Mg 2+ and SO4 2– . The total amount of feed required per mEq ranged from 1.61- 13.1 kg for the four most abundant ions (NO3 – , Ca 2+ , H2PO4 – and K+ ) at a density of 2 kg fish m–3 , suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries.