28 resultados para Three-state Potts model
em Universidad Politécnica de Madrid
Resumo:
Office automation is one of the fields where the complexity related with technologies and working environments can be best shown. This is the starting point we have chosen to build up a theoretical model that shows us a scene quite different from the one traditionally considered. Through the development of the model, the levels of complexity associated with office automation and office environments have been identified, establishing a relationship between them. Thus, the model allows to state a general principle for sociotechnical design of office automation systems, comprising the ontological distinctions needed to properly evaluate each particular technology and its virtual contribution to office automation. From this fact comes the model's taxonomic ability to draw a global perspective of the state-of-art in office automation technologies.
Resumo:
Amundsenisen is an ice field, 80 km2 in area, located in Southern Spitsbergen, Svalbard. Radio-echo sounding measurements at 20 MHz show high intensity returns from a nearly flat basal reflector at four zones, all of them with ice thickness larger than 500m. These reflections suggest possible subglacial lakes. To determine whether basal liquid water is compatible with current pressure and temperature conditions, we aim at applying a thermo mechanical model with a free boundary at the bed defined as solution of a Stefan problem for the interface ice-subglaciallake. The complexity of the problem suggests the use of a bi-dimensional model, but this requires that well-defined flowlines across the zones with suspected subglacial lakes are available. We define these flow lines from the solution of a three-dimensional dynamical model, and this is the main goal of the present contribution. We apply a three-dimensional full-Stokes model of glacier dynamics to Amundsenisen icefield. We are mostly interested in the plateau zone of the icefield, so we introduce artificial vertical boundaries at the heads of the main outlet glaciers draining Amundsenisen. At these boundaries we set velocity boundary conditions. Velocities near the centres of the heads of the outlets are known from experimental measurements. The velocities at depth are calculated according to a SIA velocity-depth profile, and those at the rest of the transverse section are computed following Nye’s (1952) model. We select as southeastern boundary of the model domain an ice divide, where we set boundary conditions of zero horizontal velocities and zero vertical shear stresses. The upper boundary is a traction-free boundary. For the basal boundary conditions, on the zones of suspected subglacial lakes we set free-slip boundary conditions, while for the rest of the basal boundary we use a friction law linking the sliding velocity to the basal shear stress,in such a way that, contrary to the shallow ice approximation, the basal shear stress is not equal to the basal driving stress but rather part of the solution.
Resumo:
Computing the modal parameters of structural systems often requires processing data from multiple non-simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors, which are fixed for all measurements, while the other sensors change their position from one setup to the next. One possibility is to process the setups separately resulting in different modal parameter estimates for each setup. Then, the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global mode shapes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a new state space model that processes all setups at once. The result is that the global mode shapes are obtained automatically, and only a value for the natural frequency and damping ratio of each mode is estimated. We also investigate the estimation of this model using maximum likelihood and the Expectation Maximization algorithm, and apply this technique to simulated and measured data corresponding to different structures.
Resumo:
This paper presents a time-domain stochastic system identification method based on Maximum Likelihood Estimation and the Expectation Maximization algorithm that is applied to the estimation of modal parameters from system input and output data. The effectiveness of this structural identification method is evaluated through numerical simulation. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the simulated structure are estimated applying the proposed identification method to a set of 100 simulated cases. The numerical results show that the proposed method estimates the modal parameters with precision in the presence of 20% measurement noise even. Finally, advantages and disadvantages of the method have been discussed.
Resumo:
The modal analysis of a structural system consists on computing its vibrational modes. The experimental way to estimate these modes requires to excite the system with a measured or known input and then to measure the system output at different points using sensors. Finally, system inputs and outputs are used to compute the modes of vibration. When the system refers to large structures like buildings or bridges, the tests have to be performed in situ, so it is not possible to measure system inputs such as wind, traffic, . . .Even if a known input is applied, the procedure is usually difficult and expensive, and there are still uncontrolled disturbances acting at the time of the test. These facts led to the idea of computing the modes of vibration using only the measured vibrations and regardless of the inputs that originated them, whether they are ambient vibrations (wind, earthquakes, . . . ) or operational loads (traffic, human loading, . . . ). This procedure is usually called Operational Modal Analysis (OMA), and in general consists on to fit a mathematical model to the measured data assuming the unobserved excitations are realizations of a stationary stochastic process (usually white noise processes). Then, the modes of vibration are computed from the estimated model. The first issue investigated in this thesis is the performance of the Expectation- Maximization (EM) algorithm for the maximum likelihood estimation of the state space model in the field of OMA. The algorithm is described in detail and it is analysed how to apply it to vibration data. After that, it is compared to another well known method, the Stochastic Subspace Identification algorithm. The maximum likelihood estimate enjoys some optimal properties from a statistical point of view what makes it very attractive in practice, but the most remarkable property of the EM algorithm is that it can be used to address a wide range of situations in OMA. In this work, three additional state space models are proposed and estimated using the EM algorithm: • The first model is proposed to estimate the modes of vibration when several tests are performed in the same structural system. Instead of analyse record by record and then compute averages, the EM algorithm is extended for the joint estimation of the proposed state space model using all the available data. • The second state space model is used to estimate the modes of vibration when the number of available sensors is lower than the number of points to be tested. In these cases it is usual to perform several tests changing the position of the sensors from one test to the following (multiple setups of sensors). Here, the proposed state space model and the EM algorithm are used to estimate the modal parameters taking into account the data of all setups. • And last, a state space model is proposed to estimate the modes of vibration in the presence of unmeasured inputs that cannot be modelled as white noise processes. In these cases, the frequency components of the inputs cannot be separated from the eigenfrequencies of the system, and spurious modes are obtained in the identification process. The idea is to measure the response of the structure corresponding to different inputs; then, it is assumed that the parameters common to all the data correspond to the structure (modes of vibration), and the parameters found in a specific test correspond to the input in that test. The problem is solved using the proposed state space model and the EM algorithm. Resumen El análisis modal de un sistema estructural consiste en calcular sus modos de vibración. Para estimar estos modos experimentalmente es preciso excitar el sistema con entradas conocidas y registrar las salidas del sistema en diferentes puntos por medio de sensores. Finalmente, los modos de vibración se calculan utilizando las entradas y salidas registradas. Cuando el sistema es una gran estructura como un puente o un edificio, los experimentos tienen que realizarse in situ, por lo que no es posible registrar entradas al sistema tales como viento, tráfico, . . . Incluso si se aplica una entrada conocida, el procedimiento suele ser complicado y caro, y todavía están presentes perturbaciones no controladas que excitan el sistema durante el test. Estos hechos han llevado a la idea de calcular los modos de vibración utilizando sólo las vibraciones registradas en la estructura y sin tener en cuenta las cargas que las originan, ya sean cargas ambientales (viento, terremotos, . . . ) o cargas de explotación (tráfico, cargas humanas, . . . ). Este procedimiento se conoce en la literatura especializada como Análisis Modal Operacional, y en general consiste en ajustar un modelo matemático a los datos registrados adoptando la hipótesis de que las excitaciones no conocidas son realizaciones de un proceso estocástico estacionario (generalmente ruido blanco). Posteriormente, los modos de vibración se calculan a partir del modelo estimado. El primer problema que se ha investigado en esta tesis es la utilización de máxima verosimilitud y el algoritmo EM (Expectation-Maximization) para la estimación del modelo espacio de los estados en el ámbito del Análisis Modal Operacional. El algoritmo se describe en detalle y también se analiza como aplicarlo cuando se dispone de datos de vibraciones de una estructura. A continuación se compara con otro método muy conocido, el método de los Subespacios. Los estimadores máximo verosímiles presentan una serie de propiedades que los hacen óptimos desde un punto de vista estadístico, pero la propiedad más destacable del algoritmo EM es que puede utilizarse para resolver un amplio abanico de situaciones que se presentan en el Análisis Modal Operacional. En este trabajo se proponen y estiman tres modelos en el espacio de los estados: • El primer modelo se utiliza para estimar los modos de vibración cuando se dispone de datos correspondientes a varios experimentos realizados en la misma estructura. En lugar de analizar registro a registro y calcular promedios, se utiliza algoritmo EM para la estimación conjunta del modelo propuesto utilizando todos los datos disponibles. • El segundo modelo en el espacio de los estados propuesto se utiliza para estimar los modos de vibración cuando el número de sensores disponibles es menor que vi Resumen el número de puntos que se quieren analizar en la estructura. En estos casos es usual realizar varios ensayos cambiando la posición de los sensores de un ensayo a otro (múltiples configuraciones de sensores). En este trabajo se utiliza el algoritmo EM para estimar los parámetros modales teniendo en cuenta los datos de todas las configuraciones. • Por último, se propone otro modelo en el espacio de los estados para estimar los modos de vibración en la presencia de entradas al sistema que no pueden modelarse como procesos estocásticos de ruido blanco. En estos casos, las frecuencias de las entradas no se pueden separar de las frecuencias del sistema y se obtienen modos espurios en la fase de identificación. La idea es registrar la respuesta de la estructura correspondiente a diferentes entradas; entonces se adopta la hipótesis de que los parámetros comunes a todos los registros corresponden a la estructura (modos de vibración), y los parámetros encontrados en un registro específico corresponden a la entrada en dicho ensayo. El problema se resuelve utilizando el modelo propuesto y el algoritmo EM.
Resumo:
Nowadays, it has become evident the need to seek sustainable development models that address challenges arising in a variety of contexts. The resilience concept appears connected to the ability of people to cope with adversities that inevitably arise due to context dynamics, at different spatial and temporal scales. This concept is related to the model known as Working With People (WWP), focused on rural development projects planning, management and evaluation, from the integration of three dimensions: technical-entrepreneurial, ethical-social and political-contextual. The research reported is part of the RETHINK European Project, whose overall aim is farm modernization and rural resilience. The resilience concept has been analyzed, in the scope of rural development projects management, and a relationship with the WWP model has been established. To this end, a thorough review of the scientific literature concerning this topic has been addressed, in order to develop the state of the art of the different concepts and models involved. A conceptual proposal for the integration of resilience in rural development projects sustainable management, through the three-dimensional WWP model is presented.
Resumo:
Contaminated soil reuse was investigated, with higher profusion, throughout the early 90’s, coinciding with the 1991 Gulf War, when efforts to amend large crude oil releases began in geotechnical assessment of contaminated soils. Isolated works referring to geotechnical testing with hydrocarbon ground contaminants are described in the state-of-the-art, which have been extended to other type of contaminated soil references. Contaminated soils by light non-aquous phase liquids (LNAPL) bearing capacity reduction has been previously investigated from a forensic point of view. To date, all the research works have been published based on the assumption of constant contaminant saturation for the entire soil mass. In contrast, the actual LNAPLs distribution plumes exhibit complex flow patterns which are subject to physical and chemical changes with time and distance travelled from the release source. This aspect has been considered along the present text. A typical Madrid arkosic soil formation is commonly known as Miga sand. Geotechnical tests have been carried out, with Miga sand specimens, in incremental series of LNAPL concentrations in order to observe the soil engineering properties variation due to a contamination increase. Results are discussed in relation with previous studies and as a matter of fact, soil mechanics parameters change in the presence of LNAPL, showing different tendencies according to each test and depending on the LNAPL content, as well as to the specimen’s initially planned relative density, dense or loose. Geotechnical practical implications are also commented on and analyzed. Variation on geotechnical properties may occur only within the external contour of contamination distribution plume. This scope has motivated the author to develop a physical model based on transparent soil technology. The model aims to reproduce the distribution of LNAPL into the ground due to an accidental release from a storage facility. Preliminary results indicate that the model is a potentially complementary tool for hydrogeological applications, site-characterization and remediation treatment testing within the framework of soil pollution events. A description of the test setup of an innovative three dimensional physical model for the flow of two or more phases, in porous media, is presented herein, along with a summary of the advantages, limitations and future applications for modeling with transparent material. En los primeros años de la década de los años 90, del siglo pasado, coincidiendo con la Guerra del Golfo en 1991, se investigó intensamente sobre la reutilización de suelos afectados por grandes volúmenes de vertidos de crudo, fomentándose la evaluación geotécnica de los suelos contaminados. Se describen, en el estado del arte de esta tésis, una serie de trabajos aislados en relación con la caracterización geotécnica de suelos contaminados con hidrocarburos, descripción ampliada mediante referencias relacionadas con otros tipos de contaminación de suelos. Existen estudios previos de patología de cimentaciones que analizan la reducción de la capacidad portante de suelos contaminados por hidrocarburos líquidos ligeros en fase no acuosa (acrónimo en inglés: LNAPL de “Liquid Non-Aquous Phase Liquid”). A fecha de redacción de la tesis, todas las publicaciones anteriores estaban basadas en la consideración de una saturación del contaminante constante en toda la extensión del terreno de cimentación. La distribución real de las plumas de contaminante muestra, por el contrario, complejas trayectorias de flujo que están sujetas a cambios físico-químicos en función del tiempo y la distancia recorrida desde su origen de vertido. Éste aspecto ha sido considerado y tratado en el presente texto. La arena de Miga es una formación geológica típica de Madrid. En el ámbito de esta tesis se han desarrollado ensayos geotécnicos con series de muestras de arena de Miga contaminadas con distintas concentraciones de LNAPL con el objeto de estimar la variación de sus propiedades geotécnicas debido a un incremento de contaminación. Se ha realizado una evaluación de resultados de los ensayos en comparación con otros estudios previamente analizados, resultando que las propiedades mecánicas del suelo, efectivamente, varían en función del contenido de LNAPL y de la densidad relativa con la que se prepare la muestra, densa o floja. Se analizan y comentan las implicaciones de carácter práctico que supone la mencionada variación de propiedades geotécnicas. El autor ha desarrollado un modelo físico basado en la tecnología de suelos transparentes, considerando que las variaciones de propiedades geotécnicas únicamente deben producirse en el ámbito interior del contorno de la pluma contaminante. El objeto del modelo es el de reproducir la distribución de un LNAPL en un terreno dado, causada por el vertido accidental de una instalación de almecenamiento de combustible. Los resultados preliminares indican que el modelo podría emplearse como una herramienta complementaria para el estudio de eventos contaminantes, permitiendo el desarrollo de aplicaciones de carácter hidrogeológico, caracterización de suelos contaminados y experimentación de tratamientos de remediación. Como aportación de carácter innovadora, se presenta y describe un modelo físico tridimensional de flujo de dos o más fases a través de un medio poroso transparente, analizándose sus ventajas e inconvenientes así como sus limitaciones y futuras aplicaciones.
Resumo:
The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.
Resumo:
System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the system" [1]. In the context of civil engineering, the system refers to a large scale structure such as a building, bridge, or an offshore structure, and identification mostly involves the determination of modal parameters (the natural frequencies, damping ratios, and mode shapes). This paper presents some modal identification results obtained using a state-of-the-art time domain system identification method (data-driven stochastic subspace algorithms [2]) applied to the output-only data measured in a steel arch bridge. First, a three dimensional finite element model was developed for the numerical analysis of the structure using ANSYS. Modal analysis was carried out and modal parameters were extracted in the frequency range of interest, 0-10 Hz. The results obtained from the finite element modal analysis were used to determine the location of the sensors. After that, ambient vibration tests were conducted during April 23-24, 2009. The response of the structure was measured using eight accelerometers. Two stations of three sensors were formed (triaxial stations). These sensors were held stationary for reference during the test. The two remaining sensors were placed at the different measurement points along the bridge deck, in which only vertical and transversal measurements were conducted (biaxial stations). Point estimate and interval estimate have been carried out in the state space model using these ambient vibration measurements. In the case of parametric models (like state space), the dynamic behaviour of a system is described using mathematical models. Then, mathematical relationships can be established between modal parameters and estimated point parameters (thus, it is common to use experimental modal analysis as a synonym for system identification). Stable modal parameters are found using a stabilization diagram. Furthermore, this paper proposes a method for assessing the precision of estimates of the parameters of state-space models (confidence interval). This approach employs the nonparametric bootstrap procedure [3] and is applied to subspace parameter estimation algorithm. Using bootstrap results, a plot similar to a stabilization diagram is developed. These graphics differentiate system modes from spurious noise modes for a given order system. Additionally, using the modal assurance criterion, the experimental modes obtained have been compared with those evaluated from a finite element analysis. A quite good agreement between numerical and experimental results is observed.
Resumo:
In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185-1191, 2010) and Elaskar et al. (Physica A. 390:2759-2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation {Mathematical expression}, where {Mathematical expression} is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases {Mathematical expression} can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data
Resumo:
Expert systems for decision support have recently been successfully introduced in road transport management. In this paper, we apply three state-of-the art ILP systems to learn how to detect traffic problems.
Resumo:
This paper is based on the following postulates taken from a book recently published by this author (Sáez-Vacas, 1990(1)): a) technological innovation in a company is understood to be the process and set of changes that the company undergoes as a result of a specific type of technology; b) the incorporation of technology in the company does not necessarily result in innovation, modernization and progress; c) the very words "modernization" and "progress" are completely bereft of any meaning if isolated from the concept of complexity in its broadest sense, including the human factor. Turning to office technology in specific, the problem of managing office technology for business innovation purposes can be likened to the problem of managing third level complexity, following the guidelines of a three-level complexity model proposed by the author some years ago
Resumo:
We analyze the gain-switching dynamics of two-section tapered lasers by means of a simplified three-rate-equation model. The goal is to improve the understanding of the underlying physics and to optimize the device geometry to achieve high power short duration optical pulses.
Resumo:
MP2RAGE has proven to be a bias-free MR acquisition with excellent contrast between grey and white matter. We investigated the ability of three state-of-the-art algorithms to automatically extract white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) from MPRAGE and MP2RAGE images: unified Segmentation (S) in SPM82 , its extension New Segment (NS), and an in-house Expectation-Maximization Markov Random Field tissue classification3 (EM-MRF) with Graph Cut (GC) optimization4 . Our goal is to quantify the differences between MPRAGE and MP2RAGE-based brain tissue probability maps.
Resumo:
Computing the modal parameters of large structures in Operational Modal Analysis often requires to process data from multiple non simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors that are fixed for all the measurements, while the other sensors are moved from one setup to the next. One possibility is to process the setups separately what result in different modal parameter estimates for each setup. Then the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global modes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a state space model that can be used to process all setups at once so the global mode shapes are obtained automatically and subsequently only a value for the natural frequency and damping ratio of each mode is computed. We also present how this model can be estimated using maximum likelihood and the Expectation Maximization algorithm. We apply this technique to real data measured at a footbridge.