4 resultados para Thermal monitoring

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La temperatura es una preocupación que juega un papel protagonista en el diseño de circuitos integrados modernos. El importante aumento de las densidades de potencia que conllevan las últimas generaciones tecnológicas ha producido la aparición de gradientes térmicos y puntos calientes durante el funcionamiento normal de los chips. La temperatura tiene un impacto negativo en varios parámetros del circuito integrado como el retardo de las puertas, los gastos de disipación de calor, la fiabilidad, el consumo de energía, etc. Con el fin de luchar contra estos efectos nocivos, la técnicas de gestión dinámica de la temperatura (DTM) adaptan el comportamiento del chip en función en la información que proporciona un sistema de monitorización que mide en tiempo de ejecución la información térmica de la superficie del dado. El campo de la monitorización de la temperatura en el chip ha llamado la atención de la comunidad científica en los últimos años y es el objeto de estudio de esta tesis. Esta tesis aborda la temática de control de la temperatura en el chip desde diferentes perspectivas y niveles, ofreciendo soluciones a algunos de los temas más importantes. Los niveles físico y circuital se cubren con el diseño y la caracterización de dos nuevos sensores de temperatura especialmente diseñados para los propósitos de las técnicas DTM. El primer sensor está basado en un mecanismo que obtiene un pulso de anchura variable dependiente de la relación de las corrientes de fuga con la temperatura. De manera resumida, se carga un nodo del circuito y posteriormente se deja flotando de tal manera que se descarga a través de las corrientes de fugas de un transistor; el tiempo de descarga del nodo es la anchura del pulso. Dado que la anchura del pulso muestra una dependencia exponencial con la temperatura, la conversión a una palabra digital se realiza por medio de un contador logarítmico que realiza tanto la conversión tiempo a digital como la linealización de la salida. La estructura resultante de esta combinación de elementos se implementa en una tecnología de 0,35 _m. El sensor ocupa un área muy reducida, 10.250 nm2, y consume muy poca energía, 1.05-65.5nW a 5 muestras/s, estas cifras superaron todos los trabajos previos en el momento en que se publicó por primera vez y en el momento de la publicación de esta tesis, superan a todas las implementaciones anteriores fabricadas en el mismo nodo tecnológico. En cuanto a la precisión, el sensor ofrece una buena linealidad, incluso sin calibrar; se obtiene un error 3_ de 1,97oC, adecuado para tratar con las aplicaciones de DTM. Como se ha explicado, el sensor es completamente compatible con los procesos de fabricación CMOS, este hecho, junto con sus valores reducidos de área y consumo, lo hacen especialmente adecuado para la integración en un sistema de monitorización de DTM con un conjunto de monitores empotrados distribuidos a través del chip. Las crecientes incertidumbres de proceso asociadas a los últimos nodos tecnológicos comprometen las características de linealidad de nuestra primera propuesta de sensor. Con el objetivo de superar estos problemas, proponemos una nueva técnica para obtener la temperatura. La nueva técnica también está basada en las dependencias térmicas de las corrientes de fuga que se utilizan para descargar un nodo flotante. La novedad es que ahora la medida viene dada por el cociente de dos medidas diferentes, en una de las cuales se altera una característica del transistor de descarga |la tensión de puerta. Este cociente resulta ser muy robusto frente a variaciones de proceso y, además, la linealidad obtenida cumple ampliamente los requisitos impuestos por las políticas DTM |error 3_ de 1,17oC considerando variaciones del proceso y calibrando en dos puntos. La implementación de la parte sensora de esta nueva técnica implica varias consideraciones de diseño, tales como la generación de una referencia de tensión independiente de variaciones de proceso, que se analizan en profundidad en la tesis. Para la conversión tiempo-a-digital, se emplea la misma estructura de digitalización que en el primer sensor. Para la implementación física de la parte de digitalización, se ha construido una biblioteca de células estándar completamente nueva orientada a la reducción de área y consumo. El sensor resultante de la unión de todos los bloques se caracteriza por una energía por muestra ultra baja (48-640 pJ) y un área diminuta de 0,0016 mm2, esta cifra mejora todos los trabajos previos. Para probar esta afirmación, se realiza una comparación exhaustiva con más de 40 propuestas de sensores en la literatura científica. Subiendo el nivel de abstracción al sistema, la tercera contribución se centra en el modelado de un sistema de monitorización que consiste de un conjunto de sensores distribuidos por la superficie del chip. Todos los trabajos anteriores de la literatura tienen como objetivo maximizar la precisión del sistema con el mínimo número de monitores. Como novedad, en nuestra propuesta se introducen nuevos parámetros de calidad aparte del número de sensores, también se considera el consumo de energía, la frecuencia de muestreo, los costes de interconexión y la posibilidad de elegir diferentes tipos de monitores. El modelo se introduce en un algoritmo de recocido simulado que recibe la información térmica de un sistema, sus propiedades físicas, limitaciones de área, potencia e interconexión y una colección de tipos de monitor; el algoritmo proporciona el tipo seleccionado de monitor, el número de monitores, su posición y la velocidad de muestreo _optima. Para probar la validez del algoritmo, se presentan varios casos de estudio para el procesador Alpha 21364 considerando distintas restricciones. En comparación con otros trabajos previos en la literatura, el modelo que aquí se presenta es el más completo. Finalmente, la última contribución se dirige al nivel de red, partiendo de un conjunto de monitores de temperatura de posiciones conocidas, nos concentramos en resolver el problema de la conexión de los sensores de una forma eficiente en área y consumo. Nuestra primera propuesta en este campo es la introducción de un nuevo nivel en la jerarquía de interconexión, el nivel de trillado (o threshing en inglés), entre los monitores y los buses tradicionales de periféricos. En este nuevo nivel se aplica selectividad de datos para reducir la cantidad de información que se envía al controlador central. La idea detrás de este nuevo nivel es que en este tipo de redes la mayoría de los datos es inútil, porque desde el punto de vista del controlador sólo una pequeña cantidad de datos |normalmente sólo los valores extremos| es de interés. Para cubrir el nuevo nivel, proponemos una red de monitorización mono-conexión que se basa en un esquema de señalización en el dominio de tiempo. Este esquema reduce significativamente tanto la actividad de conmutación sobre la conexión como el consumo de energía de la red. Otra ventaja de este esquema es que los datos de los monitores llegan directamente ordenados al controlador. Si este tipo de señalización se aplica a sensores que realizan conversión tiempo-a-digital, se puede obtener compartición de recursos de digitalización tanto en tiempo como en espacio, lo que supone un importante ahorro de área y consumo. Finalmente, se presentan dos prototipos de sistemas de monitorización completos que de manera significativa superan la características de trabajos anteriores en términos de área y, especialmente, consumo de energía. Abstract Temperature is a first class design concern in modern integrated circuits. The important increase in power densities associated to recent technology evolutions has lead to the apparition of thermal gradients and hot spots during run time operation. Temperature impacts several circuit parameters such as speed, cooling budgets, reliability, power consumption, etc. In order to fight against these negative effects, dynamic thermal management (DTM) techniques adapt the behavior of the chip relying on the information of a monitoring system that provides run-time thermal information of the die surface. The field of on-chip temperature monitoring has drawn the attention of the scientific community in the recent years and is the object of study of this thesis. This thesis approaches the matter of on-chip temperature monitoring from different perspectives and levels, providing solutions to some of the most important issues. The physical and circuital levels are covered with the design and characterization of two novel temperature sensors specially tailored for DTM purposes. The first sensor is based upon a mechanism that obtains a pulse with a varying width based on the variations of the leakage currents on the temperature. In a nutshell, a circuit node is charged and subsequently left floating so that it discharges away through the subthreshold currents of a transistor; the time the node takes to discharge is the width of the pulse. Since the width of the pulse displays an exponential dependence on the temperature, the conversion into a digital word is realized by means of a logarithmic counter that performs both the timeto- digital conversion and the linearization of the output. The structure resulting from this combination of elements is implemented in a 0.35_m technology and is characterized by very reduced area, 10250 nm2, and power consumption, 1.05-65.5 nW at 5 samples/s, these figures outperformed all previous works by the time it was first published and still, by the time of the publication of this thesis, they outnumber all previous implementations in the same technology node. Concerning the accuracy, the sensor exhibits good linearity, even without calibration it displays a 3_ error of 1.97oC, appropriate to deal with DTM applications. As explained, the sensor is completely compatible with standard CMOS processes, this fact, along with its tiny area and power overhead, makes it specially suitable for the integration in a DTM monitoring system with a collection of on-chip monitors distributed across the chip. The exacerbated process fluctuations carried along with recent technology nodes jeop-ardize the linearity characteristics of the first sensor. In order to overcome these problems, a new temperature inferring technique is proposed. In this case, we also rely on the thermal dependencies of leakage currents that are used to discharge a floating node, but now, the result comes from the ratio of two different measures, in one of which we alter a characteristic of the discharging transistor |the gate voltage. This ratio proves to be very robust against process variations and displays a more than suficient linearity on the temperature |1.17oC 3_ error considering process variations and performing two-point calibration. The implementation of the sensing part based on this new technique implies several issues, such as the generation of process variations independent voltage reference, that are analyzed in depth in the thesis. In order to perform the time-to-digital conversion, we employ the same digitization structure the former sensor used. A completely new standard cell library targeting low area and power overhead is built from scratch to implement the digitization part. Putting all the pieces together, we achieve a complete sensor system that is characterized by ultra low energy per conversion of 48-640pJ and area of 0.0016mm2, this figure outperforms all previous works. To prove this statement, we perform a thorough comparison with over 40 works from the scientific literature. Moving up to the system level, the third contribution is centered on the modeling of a monitoring system consisting of set of thermal sensors distributed across the chip. All previous works from the literature target maximizing the accuracy of the system with the minimum number of monitors. In contrast, we introduce new metrics of quality apart form just the number of sensors; we consider the power consumption, the sampling frequency, the possibility to consider different types of monitors and the interconnection costs. The model is introduced in a simulated annealing algorithm that receives the thermal information of a system, its physical properties, area, power and interconnection constraints and a collection of monitor types; the algorithm yields the selected type of monitor, the number of monitors, their position and the optimum sampling rate. We test the algorithm with the Alpha 21364 processor under several constraint configurations to prove its validity. When compared to other previous works in the literature, the modeling presented here is the most complete. Finally, the last contribution targets the networking level, given an allocated set of temperature monitors, we focused on solving the problem of connecting them in an efficient way from the area and power perspectives. Our first proposal in this area is the introduction of a new interconnection hierarchy level, the threshing level, in between the monitors and the traditional peripheral buses that applies data selectivity to reduce the amount of information that is sent to the central controller. The idea behind this new level is that in this kind of networks most data are useless because from the controller viewpoint just a small amount of data |normally extreme values| is of interest. To cover the new interconnection level, we propose a single-wire monitoring network based on a time-domain signaling scheme that significantly reduces both the switching activity over the wire and the power consumption of the network. This scheme codes the information in the time domain and allows a straightforward obtention of an ordered list of values from the maximum to the minimum. If the scheme is applied to monitors that employ TDC, digitization resource sharing is achieved, producing an important saving in area and power consumption. Two prototypes of complete monitoring systems are presented, they significantly overcome previous works in terms of area and, specially, power consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural analogs offer a valuable opportunity to investigate the long-term impacts associated with thepotential leakage in geological storage of CO2.Degassing of CO2and radon isotopes (222Rn?220Rn) from soil, gas vents and thermal water dischargeswas investigated in the natural analog of Campo de Calatrava Volcanic Field (CCVF; Central Spain) todetermine the CO2?Rn relationships and to assess the role of CO2as carrier gas for radon. Furthermore,radon measurements to discriminate between shallow and deep gas sources were evaluated under theperspective of their applicability in monitoring programs of carbon storage projects.CO2flux as high as 5000 g m?2d?1and222Rn activities up to 430 kBq m?3were measured;220Rn activi-ties were one order of magnitude lower than those of222Rn. The222Rn/220Rn ratios were used to constrainthe source of the Campo de Calatrava soil gases since a positive correlation between radon isotopic ratiosand CO2fluxes was observed. Thus, in agreement with previous studies, our results indicate a deepmantle-related origin of CO2for both free and soil gases, suggesting that carbon dioxide is an efficientcarrier for Rn. Furthermore, it was ascertained that the increase of222Rn in the soil gases was likely pro-duced by two main processes: (i) direct transport by a carrier gas, i.e., CO2and (ii) generation at shallowlevel due to the presence of relatively high concentrations of dissolved U and Ra in the thermal aquiferof Campo de Calatrava.The diffuse CO2soil flux and radon isotopic surveys carried out in the Campo de Calatrava VolcanicFields can also be applicable to geochemical monitoring programs in CCS (Carbon Capture and Storage)areas as these parameters are useful to: (i) constrain CO2leakages once detected and (ii) monitor both theevolution of the leakages and the effectiveness of subsequent remediation activities. These measurementscan also conveniently be used to detect diffuse leakages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research has shown large differences between the expected and the actual energy consumption in buildings. The differences have been attributed partially, to the assumptions made during the design phase of buildings when simulation methods are employed. More accurate occupancy profiles on building operation could help to carry out more precise building performance calculations. This study focuses on the post-occupancy evaluation of two apartments, one renovated and one non renovated, in Madrid within the same building complex. The aim of this paper is to present an application of the mixed-methods methodology (Creswell, 2007) to assess thermal comfort and occupancy practices used in the case studies, and to discuss the shortcomings and opportunities associated with it. The mixed-methods methodology offers strategies for integrating qualitative and quantitative methods to investigate complex phenomena. This approach is expected to contribute to the growing knowledge of occupants’ behaviour and building performance by explaining the differences observed between energy consumption and thermal comfort in relation to people’s saving and comfort practices and the related experiences, preferences and values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El propósito de esta tesis es estudiar la aproximación a los fenómenos de transporte térmico en edificación acristalada a través de sus réplicas a escala. La tarea central de esta tesis es, por lo tanto, la comparación del comportamiento térmico de modelos a escala con el correspondiente comportamiento térmico del prototipo a escala real. Los datos principales de comparación entre modelo y prototipo serán las temperaturas. En el primer capítulo del Estado del Arte de esta tesis se hará un recorrido histórico por los usos de los modelos a escala desde la antigüedad hasta nuestro días. Dentro de éste, en el Estado de la Técnica, se expondrán los beneficios que tiene su empleo y las dificultades que conllevan. A continuación, en el Estado de la Investigación de los modelos a escala, se analizarán artículos científicos y tesis. Precisamente, nos centraremos en aquellos modelos a escala que son funcionales. Los modelos a escala funcionales son modelos a escala que replican, además, una o algunas de las funciones de sus prototipos. Los modelos a escala pueden estar distorsionados o no. Los modelos a escala distorsionados son aquellos con cambios intencionados en las dimensiones o en las características constructivas para la obtención de una respuesta específica por ejemplo, replicar el comportamiento térmico. Los modelos a escala sin distorsión, o no distorsionados, son aquellos que mantienen, en la medida de lo posible, las proporciones dimensionales y características constructivas de sus prototipos de referencia. Estos modelos a escala funcionales y no distorsionados son especialmente útiles para los arquitectos ya que permiten a la vez ser empleados como elementos funcionales de análisis y como elementos de toma de decisiones en el diseño constructivo. A pesar de su versatilidad, en general, se observará que se han utilizado muy poco estos modelos a escala funcionales sin distorsión para el estudio del comportamiento térmico de la edificación. Posteriormente, se expondrán las teorías para el análisis de los datos térmicos recogidos de los modelos a escala y su aplicabilidad a los correspondientes prototipos a escala real. Se explicarán los experimentos llevados a cabo, tanto en laboratorio como a intemperie. Se han realizado experimentos con modelos sencillos cúbicos a diferentes escalas y sometidos a las mismas condiciones ambientales. De estos modelos sencillos hemos dado el salto a un modelo reducido de una edificación acristalada relativamente sencilla. Los experimentos consisten en ensayos simultáneos a intemperie del prototipo a escala real y su modelo reducido del Taller de Prototipos de la Escuela Técnica Superior de Arquitectura de Madrid (ETSAM). Para el análisis de los datos experimentales hemos aplicado las teorías conocidas, tanto comparaciones directas como el empleo del análisis dimensional. Finalmente, las simulaciones nos permiten comparaciones flexibles con los datos experimentales, por ese motivo, hemos utilizado tanto programas comerciales como un algoritmo de simulación desarrollado ad hoc para esta investigación. Finalmente, exponemos la discusión y las conclusiones de esta investigación. Abstract The purpose of this thesis is to study the approximation to phenomena of heat transfer in glazed buildings through their scale replicas. The central task of this thesis is, therefore, the comparison of the thermal performance of scale models without distortion with the corresponding thermal performance of their full-scale prototypes. Indoor air temperatures of the scale model and the corresponding prototype are the data to be compared. In the first chapter on the State of the Art, it will be shown a broad vision, consisting of a historic review of uses of scale models, from antiquity to our days. In the section State of the Technique, the benefits and difficulties associated with their implementation are presented. Additionally, in the section State of the Research, current scientific papers and theses on scale models are reviewed. Specifically, we focus on functional scale models. Functional scale models are scale models that replicate, additionally, one or some of the functions of their corresponding prototypes. Scale models can be distorted or not. Scale models with distortion are considered scale models with intentional changes, on one hand, in dimensions scaled unevenly and, on the other hand, in constructive characteristics or materials, in order to get a specific performance for instance, a specific thermal performance. Consequently, scale models without distortion, or undistorted scale models scaled evenly, are those replicating, to the extent possible, without distortion, the dimensional proportions and constructive configurations of their prototypes of reference. These undistorted and functional scale models are especially useful for architects because they can be used, simultaneously, as functional elements of analysis and as decision-making elements during the design. Although they are versatile, in general, it is remarkable that these types of models are used very little for the study of the thermal performance of buildings. Subsequently, the theories related to the analysis of the experimental thermal data collected from the scale models and their applicability to the corresponding full-scale prototypes, will be explained. Thereafter, the experiments in laboratory and at outdoor conditions are detailed. Firstly, experiments carried out with simple cube models at different scales are explained. The prototype larger in size and the corresponding undistorted scale model have been subjected to same environmental conditions in every experimental test. Secondly, a step forward is taken carrying out some simultaneous experimental tests of an undistorted scale model, replica of a relatively simple lightweight and glazed building construction. This experiment consists of monitoring the undistorted scale model of the prototype workshop located in the School of Architecture (ETSAM) of the Technical University of Madrid (UPM). For the analysis of experimental data, known related theories and resources are applied, such as, direct comparisons, statistical analyses, Dimensional Analysis and last, but not least important, simulations. Simulations allow us, specifically, flexible comparisons with experimental data. Here, apart the use of the simulation software EnergyPlus, a simulation algorithm is developed ad hoc for this research. Finally, the discussion and conclusions of this research are exposed.