3 resultados para Thermal aging

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluate the reliability in a short period of time, accelerated aging tests are essential. Thermal aging tests for concentrator photovoltaic solar cells and systems under illumination are not available because no technical solution to the problem of reaching the working concentration inside a climatic chamber has been available. This work presents an automatic instrumentation system that overcomes the aforementioned limitation. Working conditions have been simulated by forward biasing the solar cells to the current they would handle at the working concentration (in this case, 700 and 1050 times the irradiance at one standard sun). The instrumentation system has been deployed for more than 10 000 h in a thermal aging test for III-V concentrator solar cells, in which the generated power evolution at different temperatures has been monitored. As a result of this test, the acceleration factor has been calculated, thus allowing for the degradation evolution at any temperature in addition to normal working conditions to be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the relationship between aging, physical changes and the results of non-destructive testing of plywood. 176 pieces of plywood were tested to analyze their actual and estimated density using non-destructive methods (screw withdrawal force and ultrasound wave velocity) during a laboratory aging test. From the results of statistical analysis it can be concluded that there is a strong relationship between the non-destructive measurements carried out, and the decline in the physical properties of the panels due to aging. The authors propose several models to estimate board density. The best results are obtained with ultrasound. A reliable prediction of the degree of deterioration (aging) of board is presented. Breeder blanket materials have to produce tritium from lithium while fulfilling several strict conditions. In particular, when dealing with materials to be applied in fusion reactors, one of the key questions is the study of light ions retention, which can be produced by transmutation reactions and/or introduced by interaction with the plasma. In ceramic breeders the understanding of the hydrogen isotopes behaviour and specially the diffusion of tritium to the surface is crucial. Moreover the evolution of the microstructure during irradiation with energetic ions, neutrons and electrons is complex because of the interaction of a high number of processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Evaluating the reliability, warranty period, and power degradation of high concentration solar cells is crucial to introducing this new technology to the market. The reliability of high concentration GaAs solar cells, as measured in temperature accelerated life tests, is described in this paper. GaAs cells were tested under high thermal accelerated conditions that emulated operation under 700 or 1050 suns over a period exceeding 10 000 h. Progressive power degradation was observed, although no catastrophic failures occurred. An Arrhenius activation energy of 1.02 eV was determined from these tests. The solar cell reliability [R(t)] under working conditions of 65°C was evaluated for different failure limits (1–10% power loss). From this reliability function, the mean time to failure and the warranty time were evaluated. Solar cell temperature appeared to be the primary determinant of reliability and warranty period, with concentration being the secondary determinant. A 30-year warranty for these 1 mm2-sized GaAs cells (manufactured according to a light emitting diode-like approach) may be offered for both cell concentrations (700 and 1050 suns) if the solar cell is operated at a working temperature of 65°C.