7 resultados para The measurement and interpretation of health inequalities
em Universidad Politécnica de Madrid
Resumo:
The relationship between abstract interpretation [2] and partial evaluation [5] has received considerable attention and (partial) integrations have been proposed starting from both the partial deduction (see e.g. [6] and its references) and abstract interpretation perspectives. Abstract interpretation-based analyzers (such as the CiaoPP analyzer [9,4]) generally compute a program analysis graph [1] in order to propagate (abstract) call and success information by performing fixpoint computations when needed. On the other hand, partial deduction methods [7] incorporate powerful techniques for on-line specialization including (concrete) call propagation and unfolding.
Resumo:
The relationship between abstract interpretation and partial deduction has received considerable attention and (partial) integrations have been proposed starting from both the partial deduction and abstract interpretation perspectives. In this work we present what we argüe is the first fully described generic algorithm for efñcient and precise integration of abstract interpretation and partial deduction. Taking as starting point state-of-the-art algorithms for context-sensitive, polyvariant abstract interpretation and (abstract) partial deduction, we present an algorithm which combines the best of both worlds. Key ingredients include the accurate success propagation inherent to abstract interpretation and the powerful program transformations achievable by partial deduction. In our algorithm, the calis which appear in the analysis graph are not analyzed w.r.t. the original definition of the procedure but w.r.t. specialized definitions of these procedures. Such specialized definitions are obtained by applying both unfolding and abstract executability. Our framework is parametric w.r.t. different control strategies and abstract domains. Different combinations of such parameters correspond to existing algorithms for program analysis and specialization. Simultaneously, our approach opens the door to the efñcient computation of strictly more precise results than those achievable by each of the individual techniques. The algorithm is now one of the key components of the CiaoPP analysis and specialization system.
Resumo:
Residual stresses developed during wire drawing influence the mechanical behavior and durability of steel wires used for prestressed concrete structures, particularly the shape of the stress–strain curve, stress relaxation losses, fatigue life, and environmental cracking susceptibility. The availability of general purpose finite element analysis tools and powerful diffraction techniques (X-rays and neutrons) has made it possible to predict and measure accurately residual stress fields in cold-drawn steel wires. Work carried out in this field in the past decade, shows the prospects and limitations of residual stress measurement, how the stress relaxation losses and environmentally-assisted cracking are correlated with the profile of residual stresses and how the performance of steel wires can be improved by modifying such a stress profile
Resumo:
This Master Final Project is intended to show the process developed to the functional and electrical characterization between different devices that use the SpaceWire space communications standard integrated into an evaluation board designed for this purpose. In order to carry out this characterization, firstly, a study to understand the SpaceWire standard is done. After that, another study for the understanding of the demonstration board with its different interfaces and IPs of SpW is done. According to this, it is expected to find out how the SpW devices are structured, especially at FPGA level, and how is the communication between them. Based on the knowledge obtained about SpaceWire and the SpW devices integrated into the evaluation board, the set of measurements and the strategy to validate electrical interoperability between the different devices are defined, as well as to perform functional checks required to ensure its proper understanding. Furthermore, it will let check whether the standard is met and search the limit of operation within a communication system representative of existing equipment in a satellite. Once finished the test plan and implemented on the representative hardware, the board will be considered characterized at SpW level and a report with the conclusions reached about the operation of the SpW interfaces in the board and constraints found will be done. RESUMEN. El presente Trabajo Fin de Máster pretende mostrar el proceso realizado para la caracterización eléctrica y funcional entre distintos dispositivos que utilizan el estándar de comunicaciones espaciales SpaceWire integrados en una tarjeta de evaluación diseñada para tal efecto. Para poder llevar a cabo dicha caracterización, en primer lugar, se realiza un estudio para el conocimiento del estándar SpaceWire. A continuación, se lleva a cabo otro estudio para el conocimiento de la tarjeta de demostración en la que se encuentran los distintos interfaces e IPs de SpW. Con esto último, se pretende conocer como están estructurados los dispositivos SpW, sobre todo a nivel de FPGA, y como se realiza la comunicación entre ellos. En base a los conocimientos adquiridos acerca de SpaceWire y los dispositivos SpW de la tarjeta de evaluación, se definen el conjunto de medidas y la estrategia a seguir para validar eléctricamente la interoperabilidad entre los distintos dispositivos, así como para realizar las comprobaciones funcionales necesarias para asegurar su correcto entendimiento. Además, con ello se podrá comprobar si se cumple el estándar y se podrá también buscar el límite de operación dentro de un sistema de comunicaciones representativo de los equipos existentes en un satélite. Realizado el plan de pruebas y aplicado sobre el hardware representativo se podrá dar por caracterizada la tarjeta a nivel SpW y realizar un informe con las conclusiones alcanzadas acerca del funcionamiento de los interfaces SpW de la tarjeta y las limitaciones encontradas.
Resumo:
The underground cellars that appear in different parts of Spain are part of an agricultural landscape dispersed, sometimes damaged, others at risk of disappearing. This paper studies the measurement and display of a group of wineries located in Atauta (Soria), in the Duero River corridor. It is a unique architectural complex, facing rising, built on a smooth hillock as shown in Fig. 1. These constructions are excavated in the ground. The access to the cave or underground cellar has a shape of a narrow tube or down gallery. Immediately after, this space gets wider. There, wine is produced and stored [1]. Observation and detection of the underground cellar, both on the outside and underground, it is essential to make an inventory of the rural patrimony [2]. The geodetection is a noninvasive technique, adequate to accurately locate buried structures in the ground. Works undertaken include topographic work with the LIDAR techniques and integration with data obtained by GNSS and GPR.
Resumo:
True stress-true strain curves of naturally spun viscid line fibers retrieved directly from the spiral of orb-webs built by Argiope trifasciata spiders were measured using a novel methodology. This new procedure combines a method for removing the aqueous coating of the fibers and a technique that allows the accurate measurement of their cross sectional area. Comparison of the tensile behaviour of different samples indicates that naturally spun viscid lines show a large variability, comparable to that of other silks, such as major ampullate gland silk and silkworm silk. Nevertheless, application of a statistical analysis allowed identifying two independent parameters that underlie the variability and characterize the observed range of true stress-true strain curves. Combination of this result with previous mechanical and microstructural data suggested the assignment of these two independent effects to the degree of alignment of the protein chains and to the local relative humidity which, in turn, depends on the composition of the viscous coating and on the external environmental conditions.
Resumo:
This paper describes the design and application of the Atmospheric Evaluation and Research Integrated model for Spain (AERIS). Currently, AERIS can provide concentration profiles of NO2, O3, SO2, NH3, PM, as a response to emission variations of relevant sectors in Spain. Results are calculated using transfer matrices based on an air quality modelling system (AQMS) composed by the WRF (meteorology), SMOKE (emissions) and CMAQ (atmospheric-chemical processes) models. The AERIS outputs were statistically tested against the conventional AQMS and observations, revealing a good agreement in both cases. At the moment, integrated assessment in AERIS focuses only on the link between emissions and concentrations. The quantification of deposition, impacts (health, ecosystems) and costs will be introduced in the future. In conclusion, the main asset of AERIS is its accuracy in predicting air quality outcomes for different scenarios through a simple yet robust modelling framework, avoiding complex programming and long computing times.