2 resultados para Textual Genetics

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the participation of DAEDALUS at ImageCLEF 2011 Medical Retrieval task. We have focused on multimodal (or mixed) experiments that combine textual and visual retrieval. The main objective of our research has been to evaluate the effect on the medical retrieval process of the existence of an extended corpus that is annotated with the image type, associated to both the image itself and also to its textual description. For this purpose, an image classifier has been developed to tag each document with its class (1st level of the hierarchy: Radiology, Microscopy, Photograph, Graphic, Other) and subclass (2nd level: AN, CT, MR, etc.). For the textual-based experiments, several runs using different semantic expansion techniques have been performed. For the visual-based retrieval, different runs are defined by the corpus used in the retrieval process and the strategy for obtaining the class and/or subclass. The best results are achieved in runs that make use of the image subclass based on the classification of the sample images. Although different multimodal strategies have been submitted, none of them has shown to be able to provide results that are at least comparable to the ones achieved by the textual retrieval alone. We believe that we have been unable to find a metric for the assessment of the relevance of the results provided by the visual and textual processes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El artículo aborda el problema del encaje de diversas imágenes de una misma escena capturadas por escáner 3d para generar un único modelo tridimensional. Para ello se utilizaron algoritmos genéticos. ABSTRACT: This work introduces a solution based on genetic algorithms to find the overlapping area between two point cloud captures obtained from a three-dimensional scanner. Considering three translation coordinates and three rotation angles, the genetic algorithm evaluates the matching points in the overlapping area between the two captures given that transformation. Genetic simulated annealing is used to improve the accuracy of the results obtained by the genetic algorithm.