12 resultados para Text messaging

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

En todo el mundo se ha observado un crecimiento exponencial en la incidencia de enfermedades crónicas como la hipertensión y enfermedades cardiovasculares y respiratorias, así como la diabetes mellitus, que causa un número de muertes cada vez mayor en todo el mundo (Beaglehole et al., 2008). En concreto, la prevalencia de diabetes mellitus (DM) está aumentando de manera considerable en todas las edades y representa un serio problema de salud mundial. La diabetes fue la responsable directa de 1,5 millones de muertes en 2012 y 89 millones de años de vida ajustados por discapacidad (AVAD) (OMS, 2014). Uno de los principales dilemas que suelen asociarse a la gestión de EC es la adherencia de los pacientes a los tratamientos, que representa un aspecto multifactorial que necesita asistencia en lo relativo a: educación, autogestión, interacción entre los pacientes y cuidadores y compromiso de los pacientes. Medir la adherencia del tratamiento es complicado y, aunque se ha hablado ampliamente de ello, aún no hay soluciones “de oro” (Reviews, 2002). El compromiso de los pacientes, a través de la participación, colaboración, negociación y a veces del compromiso firme, aumentan las oportunidades para una terapia óptima en la que los pacientes se responsabilizan de su parte en la ecuación de adherencia. Comprometer e involucrar a los pacientes diabéticos en las decisiones de su tratamiento, junto con expertos profesionales, puede ayudar a favorecer un enfoque centrado en el paciente hacia la atención a la diabetes (Martin et al., 2005). La motivación y atribución de poder de los pacientes son quizás los dos factores interventores más relevantes que afectan directamente a la autogestión de la atención a la diabetes. Se ha demostrado que estos dos factores desempeñan un papel fundamental en la adherencia a la prescripción, así como en el fomento exitoso de un estilo de vida sana y otros cambios de conducta (Heneghan et al., 2013). Un plan de educación personalizada es indispensable para proporcionarle al paciente las herramientas adecuadas que necesita para la autogestión efectiva de la enfermedad (El-Gayar et al. 2013). La comunicación efectiva es fundamental para proporcionar una atención centrada en el paciente puesto que influye en las conductas y actitudes hacia un problema de salud ((Frampton et al. 2008). En este sentido, la interactividad, la frecuencia, la temporalización y la adaptación de los mensajes de texto pueden promover la adherencia a un régimen de medicación. Como consecuencia, adaptar los mensajes de texto a los pacientes puede resultar ser una manera de hacer que las sugerencias y la información sean más relevantes y efectivas (Nundy et al. 2013). En este contexto, las tecnologías móviles en el ámbito de la salud (mHealth) están desempeñando un papel importante al conectar con pacientes para mejorar la adherencia a medicamentos recetados (Krishna et al., 2009). La adaptación de los mensajes de texto específicos de diabetes sigue siendo un área de oportunidad para mejorar la adherencia a la medicación y ofrecer motivación a adultos con diabetes. Sin embargo, se necesita más investigación para entender totalmente su eficacia. Los consejos de texto personalizados han demostrado causar un impacto positivo en la atribución de poder a los pacientes, su autogestión y su adherencia a la prescripción (Gatwood et al., 2014). mHealth se puede utilizar para ofrecer programas de asistencia de autogestión a los pacientes con diabetes y, al mismo tiempo, superar las dificultades técnicas y financieras que supone el tratamiento de la diabetes (Free at al., 2013). El objetivo principal de este trabajo de investigación es demostrar que un marco tecnológico basado en las teorías de cambios de conducta, aplicado al campo de la mHealth, permite una mejora de la adherencia al tratamiento en pacientes diabéticos. Como método de definición de una solución tecnológica, se han adoptado un conjunto de diferentes técnicas de conducta validadas denominado marco de compromiso de retroacción conductual (EBF, por sus siglas en inglés) para formular los mensajes, guiar el contenido y evaluar los resultados. Los estudios incorporan elementos del modelo transteórico (TTM, por sus siglas en inglés), la teoría de la fijación de objetivos (GST, por sus siglas en inglés) y los principios de comunicación sanitaria persuasiva y eficaz. Como concepto general, el modelo TTM ayuda a los pacientes a progresar a su próxima fase de conducta a través de mensajes de texto motivados específicos y permite que el médico identifique la fase actual y adapte sus estrategias individualmente. Además, se adoptan las directrices del TTM para fijar objetivos personalizados a un nivel apropiado a la fase de cambio del paciente. La GST encierra normas que van a ponerse en práctica para promover la intervención educativa y objetivos de pérdida de peso. Finalmente, los principios de comunicación sanitaria persuasiva y eficaz aplicados a la aparición de los mensajes se han puesto en marcha para aumentar la efectividad. El EBF tiene como objetivo ayudar a los pacientes a mejorar su adherencia a la prescripción y encaminarlos a una mejora general en la autogestión de la diabetes mediante mensajes de texto personalizados denominados mensajes de retroacción automáticos (AFM, por sus siglas en inglés). Después de una primera revisión del perfil, consistente en identificar características significativas del paciente basadas en las necesidades de tratamiento, actitudes y conductas de atención sanitaria, el sistema elige los AFM personalizados, los aprueba el médico y al final se transfieren a la interfaz del paciente. Durante el tratamiento, el usuario recopila los datos en dispositivos de monitorización de pacientes (PMD, por sus siglas en inglés) de una serie de dispositivos médicos y registros manuales. Los registros consisten en la toma de medicación, dieta y actividad física y tareas de aprendizaje y control de la medida del metabolismo. El compromiso general del paciente se comprueba al estimar el uso del sistema y la adherencia del tratamiento y el estado de los objetivos del paciente a corto y largo plazo. El módulo de análisis conductual, que consiste en una serie de reglas y ecuaciones, calcula la conducta del paciente. Tras lograr el análisis conductual, el módulo de gestión de AFM actualiza la lista de AFM y la configuración de los envíos. Las actualizaciones incluyen el número, el tipo y la frecuencia de mensajes. Los AFM los revisa periódicamente el médico que también participa en el perfeccionamiento del tratamiento, adaptado a la fase transteórica actual. Los AFM se segmentan en distintas categorías y niveles y los pacientes pueden ajustar la entrega del mensaje de acuerdo con sus necesidades personales. El EBF se ha puesto en marcha integrado dentro del sistema METABO, diseñado para facilitar al paciente diabético que controle sus condiciones relevantes de una manera menos intrusiva. El dispositivo del paciente se vincula en una plataforma móvil, mientras que una interfaz de panel médico permite que los profesionales controlen la evolución del tratamiento. Herramientas específicas posibilitan que los profesionales comprueben la adherencia del paciente y actualicen la gestión de envíos de AFM. El EBF fue probado en un proyecto piloto controlado de manera aleatoria. El principal objetivo era examinar la viabilidad y aceptación del sistema. Los objetivos secundarios eran también la evaluación de la eficacia del sistema en lo referente a la mejora de la adherencia, el control glucémico y la calidad de vida. Se reclutaron participantes de cuatro centros clínicos distintos en Europa. La evaluación del punto de referencia incluía datos demográficos, estado de la diabetes, información del perfil, conocimiento de la diabetes en general, uso de las plataformas TIC, opinión y experiencia con dispositivos electrónicos y adopción de buenas prácticas con la diabetes. La aceptación y eficacia de los criterios de evaluación se aplicaron para valorar el funcionamiento del marco tecnológico. El principal objetivo era la valoración de la eficacia del sistema en lo referente a la mejora de la adherencia. En las pruebas participaron 54 pacientes. 26 fueron asignados al grupo de intervención y equipados con tecnología móvil donde estaba instalado el EBF: 14 pacientes tenían T1DM y 12 tenían T2DM. El grupo de control estaba compuesto por 25 pa cientes que fueron tratados con atención estándar, sin el empleo del EBF. La intervención profesional tanto de los grupos de control como de intervención corrió a cargo de 24 cuidadores, entre los que incluían diabetólogos, nutricionistas y enfermeras. Para evaluar la aceptabilidad del sistema y analizar la satisfacción de los usuarios, a través de LimeSurvey, se creó una encuesta multilingüe tanto para los pacientes como para los profesionales. Los resultados también se recopilaron de los archivos de registro generados en los PMD, el panel médico profesional y las entradas de la base de datos. Los mensajes enviados hacia y desde el EBF y los archivos de registro del sistema y los servicios de comunicación se grabaron durante las cinco semanas del estudio. Se entregaron un total de 2795 mensajes, lo que supuso una media de 107,50 mensajes por paciente. Como se muestra, los mensajes disminuyen con el tiempo, indicando una mejora global de la adherencia al plan de tratamiento. Como se esperaba, los pacientes con T1DM recibieron más consejos a corto plazo, en relación a su estado. Del mismo modo, al ser el centro de T2DM en cambios de estilo de vida sostenible a largo plazo, los pacientes con T2DM recibieron más consejos de recomendación, en cuanto a dietas y actividad física. También se ha llevado a cabo una comparación de la adherencia e índices de uso para pacientes con T1DM y T2DM, entre la primera y la segunda mitad de la prueba. Se han observado resultados favorables para el uso. En lo relativo a la adherencia, los resultados denotaron una mejora general en cada dimensión del plan de tratamiento, como la nutrición y las mediciones de inserción de glucosa en la sangre. Se han llevado a cabo más estudios acerca del cambio a nivel educativo antes y después de la prueba, medidos tanto para grupos de control como de intervención. Los resultados indicaron que el grupo de intervención había mejorado su nivel de conocimientos mientras que el grupo de control mostró una leve disminución. El análisis de correlación entre el nivel de adherencia y las AFM ha mostrado una mejora en la adherencia de uso para los pacientes que recibieron los mensajes de tipo alertas, y unos resultados no significativos aunque positivos relacionados con la adherencia tanto al tratamiento que al uso correlacionado con los recordatorios. Por otra parte, los AFM parecían ayudar a los pacientes que no tomaban suficientemente en serio su tratamiento en el principio y que sí estaban dispuestos a responder a los mensajes recibidos. Aun así, los pacientes que recibieron demasiadas advertencias, comenzaron a considerar el envío de mensajes un poco estresante. El trabajo de investigación llevado a cabo al desarrollar este proyecto ofrece respuestas a las cuatro hipótesis de investigación que fueron la motivación para el trabajo. • Hipótesis 1 : es posible definir una serie de criterios para medir la adherencia en pacientes diabéticos. • Hipótesis 2: es posible diseñar un marco tecnológico basado en los criterios y teorías de cambio de conducta mencionados con anterioridad para hacer que los pacientes diabéticos se comprometan a controlar su enfermedad y adherirse a planes de atención. • Hipótesis 3: es posible poner en marcha el marco tecnológico en el sector de la salud móvil. • Hipótesis 4: es posible utilizar el marco tecnológico como solución de salud móvil en un contexto real y tener efectos positivos en lo referente a indicadores de control de diabetes. La verificación de cada hipótesis permite ofrecer respuesta a la hipótesis principal: La hipótesis principal es: es posible mejorar la adherencia diabética a través de un marco tecnológico mHealth basado en teorías de cambio de conducta. El trabajo llevado a cabo para responder estas preguntas se explica en este trabajo de investigación. El marco fue desarrollado y puesto en práctica en el Proyecto METABO. METABO es un Proyecto I+D, cofinanciado por la Comisión Europea (METABO 2008) que integra infraestructura móvil para ayudar al control, gestión y tratamiento de los pacientes con diabetes mellitus de tipo 1 (T1DM) y los que padecen diabetes mellitus de tipo 2 (T2DM). ABSTRACT Worldwide there is an exponential growth in the incidence of Chronic Diseases (CDs), such as: hypertension, cardiovascular and respiratory diseases, as well as diabetes mellitus, leading to rising numbers of deaths worldwide (Beaglehole et al. 2008). In particular, the prevalence of diabetes mellitus (DM) is largely increasing among all ages and constitutes a major worldwide health problem. Diabetes was directly responsible for 1,5 million deaths in 2012 and 89 million Disability-adjusted life year (DALYs) (WHO 2014). One of the key dilemmas often associated to CD management is the patients’ adherence to treatments, representing a multi-factorial aspect that requires support in terms of: education, self-management, interaction between patients and caregivers, and patients’ engagement. Measuring adherence is complex and, even if widely discussed, there are still no “gold” standards ((Giardini et al. 2015), (Costa et al. 2015). Patient’s engagement, through participation, collaboration, negotiation, and sometimes compromise, enhance opportunities for optimal therapy in which patients take responsibility for their part of the adherence equation. Engaging and involving diabetic patients in treatment decisions, along with professional expertise, can help foster a patient-centered approach to diabetes care (Martin et al. 2005). Patients’ motivation and empowerment are perhaps the two most relevant intervening factors that directly affect self-management of diabetes care. It has been demonstrated that these two factors play an essential role in prescription adherence, as well as for the successful encouragement of a healthy life-style and other behavioural changes (Heneghan et al. 2013). A personalised education plan is indispensable in order to provide the patient with the appropriate tools needed for the effective self-management of the disease (El-Gayar et al. 2013). Effective communication is at the core of providing patient-centred care since it influences behaviours and attitudes towards a health problem (Frampton et al. 2008). In this regard, interactivity, frequency, timing, and tailoring of text messages may promote adherence to a medication regimen. As a consequence, tailoring text messages to patients can constitute a way of making suggestions and information more relevant and effective (Nundy et al. 2013). In this context, mobile health technologies (mHealth) are playing significant roles in improving adherence to prescribed medications (Krishna et al. 2009). The tailoring of diabetes-specific text messages remains an area of opportunity to improve medication adherence and provide motivation to adults with diabetes but further research is needed to fully understand their effectiveness. Personalized text advices have proven to produce a positive impact on patients’ empowerment, self-management, and adherence to prescriptions (Gatwood et al. 2014). mHealth can be used for offering self-management support programs to diabetes patients and at the same time surmounting the technical and financial difficulties involved in diabetes treatment (Free et al. 2013). The main objective of this research work is to demonstrate that a technological framework, based on behavioural change theories, applied to mHealth domain, allows improving adherence treatment in diabetic patients. The framework, named Engagement Behavioural Feedback Framework (EBF), is built on top of validated behavioural techniques to frame messages, guide the definition of contents and assess outcomes: elements from the Transtheoretical Model (TTM), the Goal-Setting Theory (GST), Effective Health Communication (EHC) guidelines and Principles of Persuasive Technology (PPT) were incorporated. The TTM helps patients to progress to a next behavioural stage, through specific motivated text messages, and allow clinician’s identifying the current stage and tailor its strategies individually. Moreover, TTM guidelines are adopted to set customised goals at a level appropriate to the patient’s stage of change. The GST was used to build rules to be applied for enhancing educational intervention and weight loss objectives. Finally, the EHC guidelines and the PPT were applied to increase the effectiveness of messages. The EBF aims to support patients on improving their prescription adherence and persuade them towards a general improvement in diabetes self-management, by means of personalised text messages, named Automatic Feedback Messages (AFM). After a first profile screening, consisting in identifying meaningful patient characteristics based on treatment needs, attitudes and health care behaviours, customised AFMs are selected by the system, approved by the professional, and finally transferred into the patient interface. During the treatment, the user collects the data into a Patient Monitoring Device (PMD) from a set of medical devices and from manual inputs. Inputs consist in medication intake, diet and physical activity, metabolic measurement monitoring and learning tasks. Patient general engagement is checked by estimating the usage of the system and the adherence of treatment and patient goals status in the short and the long term period. The Behavioural Analysis Module, consisting in a set of rules and equations, calculates the patient’s behaviour. After behavioural analysis is accomplished, the AFM library and the dispatch setting are updated by the AFM Manager module. Updates include the number, the type and the frequency of messages. The AFMs are periodically supervised by the professional who also participates to the refinement of the treatment, adapted to the current transtheoretical stage. The AFMs are segmented in different categories and levels and patients can adjust message delivery in accordance with their personal needs. The EBF was integrated to the METABO system, designed to facilitate diabetic patients in managing their disease in a less intrusive approach. Patient device corresponds in a mobile platform, while a medical panel interface allows professionals to monitoring the treatment evolution. Specific tools allow professional to check patient adherence and to update the AFMs dispatch management. The EBF was tested in a randomised controlled pilot. The main objective was to examine the feasibility and acceptance of the system. Secondary objectives were also the assessment of the effectiveness of system in terms of adherence improvement, glycaemic control, and quality of life. Participants were recruited from four different clinical centres in Europe. The baseline assessment included demographics, diabetes status, profile information, knowledge about diabetes in general, usage of ICT platforms, opinion and experience about electronic devices and adoption of good practices with diabetes. Acceptance and the effectiveness evaluation criteria were applied to evaluate the performance of the technological framework. The main objective was the assessment of the effectiveness of system in terms of adherence improvement. Fifty-four patients participated on the trials. Twenty-six patients were assigned in the intervention group and equipped with mobile where the EBF was installed: 14 patients were T1DM and 12 were T2DM. The control group was composed of 25 patients that were treated through a standard care, without the usage of the EBF. Professional’s intervention for both intervention and control groups was carried out by 24 care providers, including endocrinologists, nutritionists, and nurses. In order to evaluate the system acceptability and analyse the users’ satisfaction, an online multi-language survey, using LimeSurvey, was produced for both patients and professionals. Results were also collected from the log-files generated in the PMDs, the professional medical panel and the entries of the data base. The messages sent to and from the EBF and the log-files of the system and communication services were recorded over 5 weeks of the study. A total of 2795 messages were submitted, representing an average of 107,50 messages per patient. As demonstrated, messages decrease over time indicating an overall improvement of the care plan’s adherence. As expected, T1DM patients were more loaded with short-term advices, in accordance with their condition. Similarly, being the focus of T2DM on long-term sustainable lifestyle changes, T2DM received more reminders advices, as for diet and physical activity. Favourable outcomes were observed for treatment and usage adherences of the intervention group: for both the adherence indices, results denoted a general improvement on each care plan’s dimension, such as on nutrition and blood glucose input measurements. Further studies were conducted on the change on educational level before and after the trial, measured for both control and intervention groups. The outcomes indicated the intervention group has improved its level of knowledge, while the control group denoted a low decrease. The correlation analysis between the level of adherences and the AFMs showed an improvement in usage adherence for patients who received warnings message, while non-significantly yet even positive indicators related to both treatment and usage adherence correlated with the Reminders. Moreover, the AFMs seemed to help those patients who did not take their treatment seriously enough in the beginning and who were willing to respond to the messages they received. Even though, patients who received too many Warnings, started to consider the message dispatch to be a bit stressful. The research work carried out in developing this research work provides responses to the four research hypothesis that were the motivation for the work: •Hypothesis 1: It is possible to define a set of criteria to measure adherence in diabetic patients. •Hypothesis 2: It is possible to design a technological framework, based on the aforementioned criteria and behavioural change theories, to engage diabetic patients in managing their disease and adhere to care plans. •Hypothesis 3: It is possible to implement the technological framework in the mobile health domain. •Hypothesis 4: It is possible to use the technological framework as a mobile health solution in a real context and have positive effects in terms of diabetes management indicators. The verification of each hypothesis allowed us to provide a response to the main hypothesis: The Main Hypothesis is: It is possible to improve diabetic adherence through a mHealth technological framework based on behavioural change theories. The work carried out to answer these questions is explained in this research work. The framework was developed and applied in the METABO project. METABO is an R&D project, co-funded by the European Commission (METABO 2008) that integrates mobile infrastructure for supporting the monitoring, management, and treatment of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile phones are becoming increasingly popular and are already the first access technology to information and communication. However, people with disabilities have to face a lot of barriers when using this kind of technology. This paper presents an Accessible Contact Manager and a Real Time Text application, designed to be used by all users with disabilities. Both applications are focused to improve accessibility of mobile phones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses a novel hybrid approach for text categorization that combines a machine learning algorithm, which provides a base model trained with a labeled corpus, with a rule-based expert system, which is used to improve the results provided by the previous classifier, by filtering false positives and dealing with false negatives. The main advantage is that the system can be easily fine-tuned by adding specific rules for those noisy or conflicting categories that have not been successfully trained. We also describe an implementation based on k-Nearest Neighbor and a simple rule language to express lists of positive, negative and relevant (multiword) terms appearing in the input text. The system is evaluated in several scenarios, including the popular Reuters-21578 news corpus for comparison to other approaches, and categorization using IPTC metadata, EUROVOC thesaurus and others. Results show that this approach achieves a precision that is comparable to top ranked methods, with the added value that it does not require a demanding human expert workload to train

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate whether conventional text categorization methods may suffice to infer different verbal intelligence levels. This research goal relies on the hypothesis that the vocabulary that speakers make use of reflects their verbal intelligence levels. Automatic verbal intelligence estimation of users in a spoken language dialog system may be useful when defining an optimal dialog strategy by improving its adaptation capabilities. The work is based on a corpus containing descriptions (i.e. monologs) of a short film by test persons yielding different educational backgrounds and the verbal intelligence scores of the speakers. First, a one-way analysis of variance was performed to compare the monologs with the film transcription and to demonstrate that there are differences in the vocabulary used by the test persons yielding different verbal intelligence levels. Then, for the classification task, the monologs were represented as feature vectors using the classical TF–IDF weighting scheme. The Naive Bayes, k-nearest neighbors and Rocchio classifiers were tested. In this paper we describe and compare these classification approaches, define the optimal classification parameters and discuss the classification results obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an architecture, based on statistical machine translation, for developing the text normalization module of a text to speech conversion system. The main target is to generate a language independent text normalization module, based on data and flexible enough to deal with all situa-tions presented in this task. The proposed architecture is composed by three main modules: a tokenizer module for splitting the text input into a token graph (tokenization), a phrase-based translation module (token translation) and a post-processing module for removing some tokens. This paper presents initial exper-iments for numbers and abbreviations. The very good results obtained validate the proposed architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe new results and improvements to a lan-guage identification (LID) system based on PPRLM previously introduced in [1] and [2]. In this case, we use as parallel phone recognizers the ones provided by the Brno University of Technology for Czech, Hungarian, and Russian lan-guages, and instead of using traditional n-gram language models we use a lan-guage model that is created using a ranking with the most frequent and discrim-inative n-grams. In this language model approach, the distance between the ranking for the input sentence and the ranking for each language is computed, based on the difference in relative positions for each n-gram. This approach is able to model reliably longer span information than in traditional language models obtaining more reliable estimations. We also describe the modifications that we have being introducing along the time to the original ranking technique, e.g., different discriminative formulas to establish the ranking, variations of the template size, the suppression of repeated consecutive phones, and a new clus-tering technique for the ranking scores. Results show that this technique pro-vides a 12.9% relative improvement over PPRLM. Finally, we also describe re-sults where the traditional PPRLM and our ranking technique are combined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a low complexity strategy for detecting and recognizing text signs automatically. Traditional approaches use large image algorithms for detecting the text sign, followed by the application of an Optical Character Recognition (OCR) algorithm in the previously identified areas. This paper proposes a new architecture that applies the OCR to a whole lightly treated image and then carries out the text detection process of the OCR output. The strategy presented in this paper significantly reduces the processing time required for text localization in an image, while guaranteeing a high recognition rate. This strategy will facilitate the incorporation of video processing-based applications into the automatic detection of text sign similar to that of a smartphone. These applications will increase the autonomy of visually impaired people in their daily life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the text normalization module of a text to speech fully-trainable conversion system and its application to number transcription. The main target is to generate a language independent text normalization module, based on data instead of on expert rules. This paper proposes a general architecture based on statistical machine translation techniques. This proposal is composed of three main modules: a tokenizer for splitting the text input into a token graph, a phrase-based translation module for token translation, and a post-processing module for removing some tokens. This architecture has been evaluated for number transcription in several languages: English, Spanish and Romanian. Number transcription is an important aspect in the text normalization problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern sensor technologies and simulators applied to large and complex dynamic systems (such as road traffic networks, sets of river channels, etc.) produce large amounts of behavior data that are difficult for users to interpret and analyze. Software tools that generate presentations combining text and graphics can help users understand this data. In this paper we describe the results of our research on automatic multimedia presentation generation (including text, graphics, maps, images, etc.) for interactive exploration of behavior datasets. We designed a novel user interface that combines automatically generated text and graphical resources. We describe the general knowledge-based design of our presentation generation tool. We also present applications that we developed to validate the method, and a comparison with related work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La aparición de los smartphones, trajo consigo el desarrollo de aplicaciones móviles de mensajería instantánea. Estas aplicaciones aprovechan la infraestructura de las redes de datos para enviar los mensajes de unos dispositivos a otros, lo que supone la posibilidad de enviar mensajes ilimitados a bajo coste. Hoy en día lo inusual es ver a alguna persona que haga uso de los antiguos mensajes de texto o sms (Short Message Service), que además llevan el coste de comunicación definido por las distintas operadoras. Tanto ha sido su auge que se ha convertido en uno de los principales medios de comunicación tanto en el ámbito personal como empresarial. Desafortunadamente, cada vez son más los conductores que hacen uso de las aplicaciones de mensajería para enviar y recibir mensajes mientras conducen, a pesar de que su uso está totalmente prohibido y penado por la ley. Por este motivo, en este proyecto se propone la modificación de la aplicación de mensajería Telegram, que permite controlar el env´ıo y recepción de mensajes únicamente utilizando la voz, evitando así cualquier tipo de distracci´on ocasionada por la interacción táctil con el dispositivo. Esta idea propuesta en el proyecto puede ayudar a reducir el número de accidentes ocasionados por este tipo de distracciones al volante, así como las posibles multas e incidentes que pueda ocasionar el uso del móvil durante la conducción. ---ABSTRACT---The emergence of smartphones, fostered the development of mobile instant messaging applications. These applications take advantage of the infrastructure of data networks to send messages between devices with almost no additional cost attached to it. Today you will hardly be able to find a person who makes use of the old text messages or sms (Short Message Service), and therefore bears the cost of communication defined by the respective operators. This boom has been such that it has become one of the main communication methods or channels in both the personal and work environments. Unfortunately, more and more drivers use messaging applications to send and receive messages while they are driving, even though its use is strictly prohibited and punished by law. Therefore our objective is to modify the existing messaging application Telegram allowing interaction with the mobile device by only using the user’s voice to send and receive messages, avoiding any distractions that any tactile interaction with the device could cause. The aim is to significantly try to reduce accidents caused while driving, as well as to avoid any related potential fines and incidents that may result from use of mobile phone while driving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La nanotecnología es un área de investigación de reciente creación que trata con la manipulación y el control de la materia con dimensiones comprendidas entre 1 y 100 nanómetros. A escala nanométrica, los materiales exhiben fenómenos físicos, químicos y biológicos singulares, muy distintos a los que manifiestan a escala convencional. En medicina, los compuestos miniaturizados a nanoescala y los materiales nanoestructurados ofrecen una mayor eficacia con respecto a las formulaciones químicas tradicionales, así como una mejora en la focalización del medicamento hacia la diana terapéutica, revelando así nuevas propiedades diagnósticas y terapéuticas. A su vez, la complejidad de la información a nivel nano es mucho mayor que en los niveles biológicos convencionales (desde el nivel de población hasta el nivel de célula) y, por tanto, cualquier flujo de trabajo en nanomedicina requiere, de forma inherente, estrategias de gestión de información avanzadas. Desafortunadamente, la informática biomédica todavía no ha proporcionado el marco de trabajo que permita lidiar con estos retos de la información a nivel nano, ni ha adaptado sus métodos y herramientas a este nuevo campo de investigación. En este contexto, la nueva área de la nanoinformática pretende detectar y establecer los vínculos existentes entre la medicina, la nanotecnología y la informática, fomentando así la aplicación de métodos computacionales para resolver las cuestiones y problemas que surgen con la información en la amplia intersección entre la biomedicina y la nanotecnología. Las observaciones expuestas previamente determinan el contexto de esta tesis doctoral, la cual se centra en analizar el dominio de la nanomedicina en profundidad, así como en el desarrollo de estrategias y herramientas para establecer correspondencias entre las distintas disciplinas, fuentes de datos, recursos computacionales y técnicas orientadas a la extracción de información y la minería de textos, con el objetivo final de hacer uso de los datos nanomédicos disponibles. El autor analiza, a través de casos reales, alguna de las tareas de investigación en nanomedicina que requieren o que pueden beneficiarse del uso de métodos y herramientas nanoinformáticas, ilustrando de esta forma los inconvenientes y limitaciones actuales de los enfoques de informática biomédica a la hora de tratar con datos pertenecientes al dominio nanomédico. Se discuten tres escenarios diferentes como ejemplos de actividades que los investigadores realizan mientras llevan a cabo su investigación, comparando los contextos biomédico y nanomédico: i) búsqueda en la Web de fuentes de datos y recursos computacionales que den soporte a su investigación; ii) búsqueda en la literatura científica de resultados experimentales y publicaciones relacionadas con su investigación; iii) búsqueda en registros de ensayos clínicos de resultados clínicos relacionados con su investigación. El desarrollo de estas actividades requiere el uso de herramientas y servicios informáticos, como exploradores Web, bases de datos de referencias bibliográficas indexando la literatura biomédica y registros online de ensayos clínicos, respectivamente. Para cada escenario, este documento proporciona un análisis detallado de los posibles obstáculos que pueden dificultar el desarrollo y el resultado de las diferentes tareas de investigación en cada uno de los dos campos citados (biomedicina y nanomedicina), poniendo especial énfasis en los retos existentes en la investigación nanomédica, campo en el que se han detectado las mayores dificultades. El autor ilustra cómo la aplicación de metodologías provenientes de la informática biomédica a estos escenarios resulta efectiva en el dominio biomédico, mientras que dichas metodologías presentan serias limitaciones cuando son aplicadas al contexto nanomédico. Para abordar dichas limitaciones, el autor propone un enfoque nanoinformático, original, diseñado específicamente para tratar con las características especiales que la información presenta a nivel nano. El enfoque consiste en un análisis en profundidad de la literatura científica y de los registros de ensayos clínicos disponibles para extraer información relevante sobre experimentos y resultados en nanomedicina —patrones textuales, vocabulario en común, descriptores de experimentos, parámetros de caracterización, etc.—, seguido del desarrollo de mecanismos para estructurar y analizar dicha información automáticamente. Este análisis concluye con la generación de un modelo de datos de referencia (gold standard) —un conjunto de datos de entrenamiento y de test anotados manualmente—, el cual ha sido aplicado a la clasificación de registros de ensayos clínicos, permitiendo distinguir automáticamente los estudios centrados en nanodrogas y nanodispositivos de aquellos enfocados a testear productos farmacéuticos tradicionales. El presente trabajo pretende proporcionar los métodos necesarios para organizar, depurar, filtrar y validar parte de los datos nanomédicos existentes en la actualidad a una escala adecuada para la toma de decisiones. Análisis similares para otras tareas de investigación en nanomedicina ayudarían a detectar qué recursos nanoinformáticos se requieren para cumplir los objetivos actuales en el área, así como a generar conjunto de datos de referencia, estructurados y densos en información, a partir de literatura y otros fuentes no estructuradas para poder aplicar nuevos algoritmos e inferir nueva información de valor para la investigación en nanomedicina. ABSTRACT Nanotechnology is a research area of recent development that deals with the manipulation and control of matter with dimensions ranging from 1 to 100 nanometers. At the nanoscale, materials exhibit singular physical, chemical and biological phenomena, very different from those manifested at the conventional scale. In medicine, nanosized compounds and nanostructured materials offer improved drug targeting and efficacy with respect to traditional formulations, and reveal novel diagnostic and therapeutic properties. Nevertheless, the complexity of information at the nano level is much higher than the complexity at the conventional biological levels (from populations to the cell). Thus, any nanomedical research workflow inherently demands advanced information management. Unfortunately, Biomedical Informatics (BMI) has not yet provided the necessary framework to deal with such information challenges, nor adapted its methods and tools to the new research field. In this context, the novel area of nanoinformatics aims to build new bridges between medicine, nanotechnology and informatics, allowing the application of computational methods to solve informational issues at the wide intersection between biomedicine and nanotechnology. The above observations determine the context of this doctoral dissertation, which is focused on analyzing the nanomedical domain in-depth, and developing nanoinformatics strategies and tools to map across disciplines, data sources, computational resources, and information extraction and text mining techniques, for leveraging available nanomedical data. The author analyzes, through real-life case studies, some research tasks in nanomedicine that would require or could benefit from the use of nanoinformatics methods and tools, illustrating present drawbacks and limitations of BMI approaches to deal with data belonging to the nanomedical domain. Three different scenarios, comparing both the biomedical and nanomedical contexts, are discussed as examples of activities that researchers would perform while conducting their research: i) searching over the Web for data sources and computational resources supporting their research; ii) searching the literature for experimental results and publications related to their research, and iii) searching clinical trial registries for clinical results related to their research. The development of these activities will depend on the use of informatics tools and services, such as web browsers, databases of citations and abstracts indexing the biomedical literature, and web-based clinical trial registries, respectively. For each scenario, this document provides a detailed analysis of the potential information barriers that could hamper the successful development of the different research tasks in both fields (biomedicine and nanomedicine), emphasizing the existing challenges for nanomedical research —where the major barriers have been found. The author illustrates how the application of BMI methodologies to these scenarios can be proven successful in the biomedical domain, whilst these methodologies present severe limitations when applied to the nanomedical context. To address such limitations, the author proposes an original nanoinformatics approach specifically designed to deal with the special characteristics of information at the nano level. This approach consists of an in-depth analysis of the scientific literature and available clinical trial registries to extract relevant information about experiments and results in nanomedicine —textual patterns, common vocabulary, experiment descriptors, characterization parameters, etc.—, followed by the development of mechanisms to automatically structure and analyze this information. This analysis resulted in the generation of a gold standard —a manually annotated training or reference set—, which was applied to the automatic classification of clinical trial summaries, distinguishing studies focused on nanodrugs and nanodevices from those aimed at testing traditional pharmaceuticals. The present work aims to provide the necessary methods for organizing, curating and validating existing nanomedical data on a scale suitable for decision-making. Similar analysis for different nanomedical research tasks would help to detect which nanoinformatics resources are required to meet current goals in the field, as well as to generate densely populated and machine-interpretable reference datasets from the literature and other unstructured sources for further testing novel algorithms and inferring new valuable information for nanomedicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se comparan y contrastan las destrezas requeridas para la comprensión lectora con aquellas que se necesitan para la producción de escritos correctos, en inglés, coherentes y bien cohesionados. Se comentan las actividades didácticas relacionadas con ello.The aim of this article is to establish the relevance of teaching reading and writing skills to students at Madrid Polytechnic University, and to show the relationship and interdependence of these activities in EAP courses. The skills involved in reading and writing processes for academic purposes for L2 students are compared and commented on from a rhetorical point of view. Learning tasks based on text-type analysis are recommended as adequate activities to build schemata for writing and represent a synthesis of the teaching objectives proposed for reading and writing English courses.