2 resultados para Testing-machines

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Cloud nodes that can interoperate together. We have chosen to represent the P2P nodes as Planet Lab machines over the world and the cloud nodes using a Cloud provider's network. First we present an experimental validation of the Cloud infrastructure's ability to distribute streaming sessions with respect to some key streaming QoS parameters: jitter, throughput and packet losses. Next we show the results obtained from different test scenarios, when a hybrid distribution network is used. The scenarios measure the improvement of the multimedia QoS parameters, when nodes in the streaming distribution network (located in different continents) are gradually moved into the Cloud provider infrastructure. The overall conclusion is that the QoS of a streaming service can be efficiently improved, unlike in traditional P2P systems and CDN, by deploying a hybrid streaming architecture. This enhancement can be obtained by strategic placing of certain distribution network nodes into the Cloud provider infrastructure, taking advantage of the reduced packet loss and low latency that exists among its datacenters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automated Teller Machines (ATMs) are sensitive self-service systems that require important investments in security and testing. ATM certifications are testing processes for machines that integrate software components from different vendors and are performed before their deployment for public use. This project was originated from the need of optimization of the certification process in an ATM manufacturing company. The process identifies compatibility problems between software components through testing. It is composed by a huge number of manual user tasks that makes the process very expensive and error-prone. Moreover, it is not possible to fully automate the process as it requires human intervention for manipulating ATM peripherals. This project presented important challenges for the development team. First, this is a critical process, as all the ATM operations rely on the software under test. Second, the context of use of ATMs applications is vastly different from ordinary software. Third, ATMs’ useful lifetime is beyond 15 years and both new and old models need to be supported. Fourth, the know-how for efficient testing depends on each specialist and it is not explicitly documented. Fifth, the huge number of tests and their importance implies the need for user efficiency and accuracy. All these factors led us conclude that besides the technical challenges, the usability of the intended software solution was critical for the project success. This business context is the motivation of this Master Thesis project. Our proposal focused in the development process applied. By combining user-centered design (UCD) with agile development we ensured both the high priority of usability and the early mitigation of software development risks caused by all the technology constraints. We performed 23 development iterations and finally we were able to provide a working solution on time according to users’ expectations. The evaluation of the project was carried out through usability tests, where 4 real users participated in different tests in the real context of use. The results were positive, according to different metrics: error rate, efficiency, effectiveness, and user satisfaction. We discuss the problems found, the benefits and the lessons learned in the process. Finally, we measured the expected project benefits by comparing the effort required by the current and the new process (once the new software tool is adopted). The savings corresponded to 40% less effort (man-hours) per certification. Future work includes additional evaluation of product usability in a real scenario (with customers) and the measuring of benefits in terms of quality improvement.