5 resultados para Term variation
em Universidad Politécnica de Madrid
Resumo:
In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology-Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.
Resumo:
In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology- Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.
Resumo:
The United Nations Climate Change Conference, Durban 2011, delivered a breakthrough on the international community's response to climate change. In the second largest meeting of its kind, the negotiations advanced, in a balanced fashion, the implementation of the Convention and the Kyoto Protocol, the Bali Action Plan, and the Cancun Agreements. The outcomes included a decision by Parties to adopt a universal legal agreement on climate change as soon as possible, and no later than 2015. One of the decisions adopted by COP 17 and CMP 7 regard to the land use, land-use change and forestry, and invites the Intergovernmental Panel on Climate Change to review and, if necessary, update supplementary methodologies for estimating anthropogenic greenhouse gas emissions by sources and removals by sinks resulting from land use, land-use change and forestry activities under Article 3, paragraphs 3 and 4, of the Kyoto Protocol. Land degradation is a human-induced or natural process which negatively affects the productivity of land within an ecosystem. The direct causes of land degradation are geographically specific. Climate change, including changes in short-term variation, as well as long-term gradual changes in temperature and precipitation, is expected to be an additional stress on rates of land degradation. Book Topics: • Introduction to Climate Change and Land Degradation • Change Mitigation • Climate Change and Waste Land Restoration • Water Management and Planning • Erosion and Hydrological Restoration • Forest Fire Land Restoration • Polluted Soils Restoration • Combating Climate Change by Restoration of Degraded Land • Research Matters – Climate Change Governance • Advanced Statistics Climate Change and Restoration of Degraded Land is of interests to academics, engineers, consultans, designers and professionals involved in restoration of degraded lands projects.
Resumo:
El manejo pre-sacrificio es de vital importancia en acuicultura, ya que afecta tanto a las reacciones fisiológicas como a los procesos bioquímicos post mortem, y por tanto al bienestar y a la calidad del producto. El ayuno pre-sacrificio se lleva a cabo de forma habitual en acuicultura, ya que permite el vaciado del aparato digestivo de restos de alimento y heces, reduciendo de esta manera la carga bacteriana en el intestino y la dispersión de enzimas digestivos y potenciales patógenos a la carne. Sin embargo, la duración óptima de este ayuno sin que el pez sufra un estrés innecesario no está clara. Además, se sabe muy poco sobre la mejor hora del día para realizar el sacrificio, lo que a su vez está regido por los ritmos diarios de los parámetros fisiológicos de estrés. Finalmente, se sabe que la temperatura del agua juega un papel muy importante en la fisiología del estrés pero no se ha determinado su efecto en combinación con el ayuno. Además, las actuales recomendaciones en relación a la duración óptima del ayuno previo al sacrificio en peces no suelen considerar la temperatura del agua y se basan únicamente en días y no en grados día (ºC d). Se determinó el efecto del ayuno previo al sacrificio (1, 2 y 3 días, equivalente a 11,1-68,0 grados día) y la hora de sacrificio (08h00, 14h00 y 20h00) en trucha arco iris (Oncorhynchus mykiss) de tamaño comercial en cuatro pruebas usando diferentes temperaturas de agua (Prueba 1: 11,8 ºC; Prueba 2: 19,2 ºC; Prueba 3: 11,1 ºC; y Prueba 4: 22,7 ºC). Se midieron indicadores biométricos, hematológicos, metabólicos y de calidad de la carne. En cada prueba, los valores de los animales ayunados (n=90) se compararon con 90 animales control mantenidos bajo condiciones similares pero nos ayunados. Los resultados sugieren que el ayuno tuvo un efecto significativo sobre los indicadores biométricos. El coeficiente de condición en los animales ayunados fue menor que en los controles después de 2 días de ayuno. El vaciado del aparato digestivo se produjo durante las primeras 24 h de ayuno, encontrándose pequeñas cantidades de alimento después de 48 h. Por otra parte, este vaciado fue más rápido cuando las temperaturas fueron más altas. El peso del hígado de los animales ayunados fue menor y las diferencias entre truchas ayunadas y controles fueron más evidentes a medida que el vaciado del aparato digestivo fue más rápido. El efecto del ayuno hasta 3 días en los indicadores hematológicos no fue significativo. Los niveles de cortisol en plasma resultaron ser altos tanto en truchas ayunadas como en las alimentadas en todas las pruebas realizadas. La concentración media de glucosa varió entre pruebas pero mostró una tendencia a disminuir en animales ayunados a medida que el ayuno progresaba. En cualquier caso, parece que la temperatura del agua jugó un papel muy importante, ya que se encontraron concentraciones más altas durante los días 2 y 3 de ayuno en animales mantenidos a temperaturas más bajas previamente al sacrificio. Los altos niveles de lactato obtenidos en sangre parecen sugerir episodios de intensa actividad muscular pero no se pudo encontrar relación con el ayuno. De la misma manera, el nivel de hematocrito no mostró efecto alguno del ayuno y los leucocitos tendieron a ser más altos cuando los animales estaban menos estresados y cuando su condición corporal fue mayor. Finalmente, la disminución del peso del hígado (índice hepatosomático) en la Prueba 3 no se vio acompañada de una reducción del glucógeno hepático, lo que sugiere que las truchas emplearon una estrategia diferente para mantener constantes los niveles de glucosa durante el periodo de ayuno en esa prueba. En relación a la hora de sacrificio, se obtuvieron niveles más bajos de cortisol a las 20h00, lo que indica que las truchas estaban menos estresadas y que el manejo pre-sacrificio podría resultar menos estresante por la noche. Los niveles de hematocrito fueron también más bajos a las 20h00 pero solo con temperaturas más bajas, sugiriendo que las altas temperaturas incrementan el metabolismo. Ni el ayuno ni la hora de sacrificio tuvieron un efecto significativo sobre la evolución de la calidad de la carne durante los 3 días de almacenamiento. Por el contrario, el tiempo de almacenamiento sí que parece tener un efecto claro sobre los parámetros de calidad del producto final. Los niveles más bajos de pH se alcanzaron a las 24-48 h post mortem, con una lata variabilidad entre duraciones del ayuno (1, 2 y 3 días) en animales sacrificados a las 20h00, aunque no se pudo distinguir ningún patrón común. Por otra parte, la mayor rigidez asociada al rigor mortis se produjo a las 24 h del sacrificio. La capacidad de retención de agua se mostró muy estable durante el período de almacenamiento y parece ser independiente de los cambios en el pH. El parámetro L* de color se incrementó a medida que avanzaba el período de almacenamiento de la carne, mientras que los valores a* y b* no variaron en gran medida. En conclusión, basándose en los resultados hematológicos, el sacrificio a última hora del día parece tener un efecto menos negativo en el bienestar. De manera general, nuestros resultados sugieren que la trucha arco iris puede soportar un período de ayuno previo al sacrificio de hasta 3 días o 68 ºC d sin que su bienestar se vea seriamente comprometido. Es probable que con temperaturas más bajas las truchas pudieran ser ayunadas durante más tiempo sin ningún efecto negativo sobre su bienestar. En cualquier caso, se necesitan más estudios para determinar la relación entre la temperatura del agua y la duración óptima del ayuno en términos de pérdida de peso vivo y la disminución de los niveles de glucosa en sangre y otros indicadores metabólicos. SUMMARY Pre-slaughter handling in fish is important because it affects both physiological reactions and post mortem biochemical processes, and thus welfare and product quality. Pre-slaughter fasting is regularly carried out in aquaculture, as it empties the viscera of food and faeces, thus reducing the intestinal bacteria load and the spread of gut enzymes and potential pathogens to the flesh. However, it is unclear how long rainbow trout can be fasted before suffering unnecessary stress. In addition, very little is known about the best time of the day to slaughter fish, which may in turn be dictated by diurnal rhythms in physiological stress parameters. Water temperature is also known to play a very important role in stress physiology in fish but the combined effect with fasting is unclear. Current recommendations regarding the optimal duration of pre-slaughter fasting do not normally consider water temperature and are only based on days, not degree days (ºC d). The effects of short-term fasting prior to slaughter (1, 2 and 3 days, between 11.1 and 68.0 ºC days) and hour of slaughter (08h00, 14h00 and 20h00) were determined in commercial-sized rainbow trout (Oncorhynchus mykiss) over four trials at different water temperatures (TRIAL 1, 11.8 ºC; TRIAL 2, 19.2 ºC; TRIAL 3, 11.1 ºC; and TRIAL 4, 22.7 ºC). We measured biometric, haematological, metabolic and product quality indicators. In each trial, the values of fasted fish (n=90) were compared with 90 control fish kept under similar conditions but not fasted. Results show that fasting affected biometric indicators. The coefficient of condition in fasted trout was lower than controls 2 days after food deprivation. Gut emptying occurred within the first 24 h after the cessation of feeding, with small traces of digesta after 48 h. Gut emptying was faster at higher water temperatures. Liver weight decreased in food deprived fish and differences between fasted and fed trout were more evident when gut clearance was faster. The overall effect of fasting for up to three days on haematological indicators was small. Plasma cortisol levels were high in both fasted and fed fish in all trials. Plasma glucose response to fasting varied among trials, but it tended to be lower in fasted fish as the days of fasting increased. In any case, it seems that water temperature played a more important role, with higher concentrations at lower temperatures on days 2 and 3 after the cessation of feeding. Plasma lactate levels indicate moments of high muscular activity and were also high, but no variation related to fasting could be found. Haematocrit did not show any significant effect of fasting, but leucocytes tended to be higher when trout were less stressed and when their body condition was higher. Finally, the loss of liver weight was not accompanied by a decrease in liver glycogen (only measured in TRIAL 3), suggesting that a different strategy to maintain plasma glucose levels was used. Regarding the hour of slaughter, lower cortisol levels were found at 20h00, suggesting that trout were less stressed later in the day and that pre-slaughter handling may be less stressful at night. Haematocrit levels were also lower at 20h00 but only at lower temperatures, indicating that higher temperatures increase metabolism. Neither fasting nor the hour of slaughter had a significant effect on the evolution of meat quality during 3 days of storage. In contrast, storage time seemed to have a more important effect on meat quality parameters. The lowest pH was reached 24-48 h post mortem, with a higher variability among fasting durations at 20h00, although no clear pattern could be discerned. Maximum stiffening from rigor mortis occurred after 24 h. The water holding capacity was very stable throughout storage and seemed to be independent of pH changes. Meat lightness (L*) slightly increased during storage and a* and b*-values were relatively stable. In conclusion, based on the haematological results, slaughtering at night may have less of a negative effect on welfare than at other times of the day. Overall, our results suggest that rainbow trout can cope well with fasting up to three days or 68 ºC d prior to slaughter and that their welfare is therefore not seriously compromised. At low water temperatures, trout could probably be fasted for longer periods without negative effects on welfare but more research is needed to determine the relationship between water temperature and days of fasting in terms of loss of live weight and the decrease in plasma glucose and other metabolic indicators.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.