2 resultados para Tension Leg Platform (Tlp)

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La energía eólica marina es uno de los recursos energéticos con mayor proyección pudiendo contribuir a reducir el consumo de combustibles fósiles y a cubrir la demanda de energía en todo el mundo. El concepto de aerogenerador marino está basado en estructuras fijas como jackets o en plataformas flotantes, ya sea una semisumergible o una TLP. Se espera que la energía eólica offshore juegue un papel importante en el perfil de producción energética de los próximos años; por tanto, las turbinas eólicas deben hacerse más fables y rentables para ser competitivas frente a otras fuentes de energía. Las estructuras flotantes pueden experimentar movimientos resonantes en estados de la mar con largos períodos de oleaje. Estos movimientos disminuyen su operatividad y pueden causar daños en los componentes eléctricos de las turbinas y en las palas, también en los risers y moorings. La respuesta de la componente vertical del movimiento puede reducirse mediante diferentes actuaciones: (1) aumentando la amortiguación del sistema, (2) manteniendo el período del movimiento vertical fuera del rango de la energía de la ola, y (3) reduciendo las fuerzas de excitación verticales. Un ejemplo típico para llevar a cabo esta reducción son las "Heave Plates". Las heave plates son placas que se utilizan en la industria offshore debido a sus características hidrodinámicas, ya que aumentan la masa añadida y la amortiguación del sistema. En un análisis hidrodinámico convencional, se considera una estructura sometida a un oleaje con determinadas características y se evalúan las cargas lineales usando la teoría potencial. El amortiguamiento viscoso, que juega un papel crucial en la respuesta en resonancia del sistema, es un dato de entrada para el análisis. La tesis se centra principalmente en la predicción del amortiguamiento viscoso y de la masa añadida de las heave plates usadas en las turbinas eólicas flotantes. En los cálculos, las fuerzas hidrodinámicas se han obtenido con el f n de estudiar cómo los coeficientes hidrodinámicos de masa añadida5 y amortiguamiento varían con el número de KC, que caracteriza la amplitud del movimiento respecto al diámetro del disco. Por otra parte, se ha investigado la influencia de la distancia media de la ‘heave plate’ a la superficie libre o al fondo del mar, sobre los coeficientes hidrodinámicos. En este proceso, un nuevo modelo que describe el trabajo realizado por la amortiguación en función de la enstrofía, es descrito en el presente documento. Este nuevo enfoque es capaz de proporcionar una correlación directa entre el desprendimiento local de vorticidad y la fuerza de amortiguación global. El análisis también incluye el estudio de los efectos de la geometría de la heave plate, y examina la sensibilidad de los coeficientes hidrodinámicos al incluir porosidad en ésta. Un diseño novedoso de una heave plate, basado en la teoría fractal, también fue analizado experimentalmente y comparado con datos experimentales obtenidos por otros autores. Para la resolución de las ecuaciones de Navier Stokes se ha usado un solver basado en el método de volúmenes finitos. El solver usa las librerías de OpenFOAM (Open source Field Operation And Manipulation), para resolver un problema multifásico e incompresible, usando la técnica VOF (volume of fluid) que permite capturar el movimiento de la superficie libre. Los resultados numéricos han sido comparados con resultados experimentales llevados a cabo en el Canal del Ensayos Hidrodinámicos (CEHINAV) de la Universidad Politécnica de Madrid y en el Canal de Experiencias Hidrodinámicas (CEHIPAR) en Madrid, al igual que con otros experimentos realizados en la Escuela de Ingeniería Mecánica de la Universidad de Western Australia. Los principales resultados se presentan a continuación: 1. Para pequeños valores de KC, los coeficientes hidrodinámicos de masa añadida y amortiguamiento incrementan su valor a medida que el disco se aproxima al fondo marino. Para los casos cuando el disco oscila cerca de la superficie libre, la dependencia de los coeficientes hidrodinámicos es más fuerte por la influencia del movimiento de la superficie libre. 2. Los casos analizados muestran la existencia de un valor crítico de KC, donde la tendencia de los coeficientes hidrodinámicos se ve alterada. Dicho valor crítico depende de la distancia al fondo marino o a la superficie libre. 3. El comportamiento físico del flujo, para valores de KC cercanos a su valor crítico ha sido estudiado mediante el análisis del campo de vorticidad. 4. Introducir porosidad al disco, reduce la masa añadida para los valores de KC estudiados, pero se ha encontrado que la porosidad incrementa el valor del coeficiente de amortiguamiento cuando se incrementa la amplitud del movimiento, logrando un máximo de damping para un disco con 10% de porosidad. 5. Los resultados numéricos y experimentales para los discos con faldón, muestran que usar este tipo de geometrías incrementa la masa añadida cuando se compara con el disco sólido, pero reduce considerablemente el coeficiente de amortiguamiento. 6. Un diseño novedoso de heave plate basado en la teoría fractal ha sido experimentalmente estudiado a diferentes calados y comparado con datos experimentales obtenidos por otro autores. Los resultados muestran un comportamiento incierto de los coeficientes y por tanto este diseño debería ser estudiado más a fondo. ABSTRACT Offshore wind energy is one of the promising resources which can reduce the fossil fuel energy consumption and cover worldwide energy demands. Offshore wind turbine concepts are based on either a fixed structure as a jacket or a floating offshore platform like a semisubmersible, spar or tension leg platform. Floating offshore wind turbines have the potential to be an important part of the energy production profile in the coming years. In order to accomplish this wind integration, these wind turbines need to be made more reliable and cost efficient to be competitive with other sources of energy. Floating offshore artifacts, such oil rings and wind turbines, may experience resonant heave motions in sea states with long peak periods. These heave resonances may increase the system downtime and cause damage on the system components and as well as on risers and mooring systems. The heave resonant response may be reduced by different means: (1) increasing the damping of the system, (2) keeping the natural heave period outside the range of the wave energy, and (3) reducing the heave excitation forces. A typical example to accomplish this reduction are “Heave Plates”. Heave plates are used in the offshore industry due to their hydrodynamic characteristics, i.e., increased added mass and damping. Conventional offshore hydrodynamic analysis considers a structure in waves, and evaluates the linear and nonlinear loads using potential theory. Viscous damping, which is expected to play a crucial role in the resonant response, is an empirical input to the analysis, and is not explicitly calculated. The present research has been mainly focused on the prediction of viscous damping and added mass of floating offshore wind turbine heave plates. In the calculations, the hydrodynamic forces have been measured in order to compute how the hydrodynamic coefficients of added mass1 and damping vary with the KC number, which characterises the amplitude of heave motion relative to the diameter of the disc. In addition, the influence on the hydrodynamic coefficients when the heave plate is oscillating close to the free surface or the seabed has been investigated. In this process, a new model describing the work done by damping in terms of the flow enstrophy, is described herein. This new approach is able to provide a direct correlation between the local vortex shedding processes and the global damping force. The analysis also includes the study of different edges geometry, and examines the sensitivity of the damping and added mass coefficients to the porosity of the plate. A novel porous heave plate based on fractal theory has also been proposed, tested experimentally and compared with experimental data obtained by other authors for plates with similar porosity. A numerical solver of Navier Stokes equations, based on the finite volume technique has been applied. It uses the open-source libraries of OpenFOAM (Open source Field Operation And Manipulation), to solve 2 incompressible, isothermal immiscible fluids using a VOF (volume of fluid) phase-fraction based interface capturing approach, with optional mesh motion and mesh topology changes including adaptive re-meshing. Numerical results have been compared with experiments conducted at Technical University of Madrid (CEHINAV) and CEHIPAR model basins in Madrid and with others performed at School of Mechanical Engineering in The University of Western Australia. A brief summary of main results are presented below: 1. At low KC numbers, a systematic increase in added mass and damping, corresponding to an increase in the seabed proximity, is observed. Specifically, for the cases when the heave plate is oscillating closer to the free surface, the dependence of the hydrodynamic coefficients is strongly influenced by the free surface. 2. As seen in experiments, a critical KC, where the linear trend of the hydrodynamic coefficients with KC is disrupted and that depends on the seabed or free surface distance, has been found. 3. The physical behavior of the flow around the critical KC has been explained through an analysis of the flow vorticity field. 4. The porosity of the heave plates reduces the added mass for the studied porosity at all KC numbers, but the porous heave plates are found to increase the damping coefficient with increasing amplitude of oscillation, achieving a maximum damping coefficient for the heave plate with 10% porosity in the entire KC range. 5. Another concept taken into account in this work has been the heave plates with flaps. Numerical and experimental results show that using discs with flaps will increase added mass when compared to the plain plate but may also significantly reduce damping. 6. A novel heave plate design based on fractal theory has tested experimentally for different submergences and compared with experimental data obtained by other authors for porous plates. Results show an unclear behavior in the coefficients and should be studied further. Future work is necessary in order to address a series of open questions focusing on 3D effects, optimization of the heave plates shapes, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El cálculo de cargas de aerogeneradores flotantes requiere herramientas de simulación en el dominio del tiempo que consideren todos los fenómenos que afectan al sistema, como la aerodinámica, la dinámica estructural, la hidrodinámica, las estrategias de control y la dinámica de las líneas de fondeo. Todos estos efectos están acoplados entre sí y se influyen mutuamente. Las herramientas integradas se utilizan para calcular las cargas extremas y de fatiga que son empleadas para dimensionar estructuralmente los diferentes componentes del aerogenerador. Por esta razón, un cálculo preciso de las cargas influye de manera importante en la optimización de los componentes y en el coste final del aerogenerador flotante. En particular, el sistema de fondeo tiene gran impacto en la dinámica global del sistema. Muchos códigos integrados para la simulación de aerogeneradores flotantes utilizan modelos simplificados que no consideran los efectos dinámicos de las líneas de fondeo. Una simulación precisa de las líneas de fondeo dentro de los modelos integrados puede resultar fundamental para obtener resultados fiables de la dinámica del sistema y de los niveles de cargas en los diferentes componentes. Sin embargo, el impacto que incluir la dinámica de los fondeos tiene en la simulación integrada y en las cargas todavía no ha sido cuantificada rigurosamente. El objetivo principal de esta investigación es el desarrollo de un modelo dinámico para la simulación de líneas de fondeo con precisión, validarlo con medidas en un tanque de ensayos e integrarlo en un código de simulación para aerogeneradores flotantes. Finalmente, esta herramienta, experimentalmente validada, es utilizada para cuantificar el impacto que un modelos dinámicos de líneas de fondeo tienen en la computación de las cargas de fatiga y extremas de aerogeneradores flotantes en comparación con un modelo cuasi-estático. Esta es una información muy útil para los futuros diseñadores a la hora de decidir qué modelo de líneas de fondeo es el adecuado, dependiendo del tipo de plataforma y de los resultados esperados. El código dinámico de líneas de fondeo desarrollado en esta investigación se basa en el método de los Elementos Finitos, utilizando en concreto un modelo ”Lumped Mass” para aumentar su eficiencia de computación. Los experimentos realizados para la validación del código se realizaron en el tanque del École Céntrale de Nantes (ECN), en Francia, y consistieron en sumergir una cadena con uno de sus extremos anclados en el fondo del tanque y excitar el extremo suspendido con movimientos armónicos de diferentes periodos. El código demostró su capacidad para predecir la tensión y los movimientos en diferentes posiciones a lo largo de la longitud de la línea con gran precisión. Los resultados indicaron la importancia de capturar la dinámica de las líneas de fondeo para la predicción de la tensión especialmente en movimientos de alta frecuencia. Finalmente, el código se utilizó en una exhaustiva evaluación del efecto que la dinámica de las líneas de fondeo tiene sobre las cargas extremas y de fatiga de diferentes conceptos de aerogeneradores flotantes. Las cargas se calcularon para tres tipologías de aerogenerador flotante (semisumergible, ”spar-buoy” y ”tension leg platform”) y se compararon con las cargas obtenidas utilizando un modelo cuasi-estático de líneas de fondeo. Se lanzaron y postprocesaron más de 20.000 casos de carga definidos por la norma IEC 61400-3 siguiendo todos los requerimientos que una entidad certificadora requeriría a un diseñador industrial de aerogeneradores flotantes. Los resultados mostraron que el impacto de la dinámica de las líneas de fondeo, tanto en las cargas de fatiga como en las extremas, se incrementa conforme se consideran elementos situados más cerca de la plataforma: las cargas en la pala y en el eje sólo son ligeramente modificadas por la dinámica de las líneas, las cargas en la base de la torre pueden cambiar significativamente dependiendo del tipo de plataforma y, finalmente, la tensión en las líneas de fondeo depende fuertemente de la dinámica de las líneas, tanto en fatiga como en extremas, en todos los conceptos de plataforma que se han evaluado. ABSTRACT The load calculation of floating offshore wind turbine requires time-domain simulation tools taking into account all the phenomena that affect the system such as aerodynamics, structural dynamics, hydrodynamics, control actions and the mooring lines dynamics. These effects present couplings and are mutually influenced. The results provided by integrated simulation tools are used to compute the fatigue and ultimate loads needed for the structural design of the different components of the wind turbine. For this reason, their accuracy has an important influence on the optimization of the components and the final cost of the floating wind turbine. In particular, the mooring system greatly affects the global dynamics of the floater. Many integrated codes for the simulation of floating wind turbines use simplified approaches that do not consider the mooring line dynamics. An accurate simulation of the mooring system within the integrated codes can be fundamental to obtain reliable results of the system dynamics and the loads. The impact of taking into account the mooring line dynamics in the integrated simulation still has not been thoroughly quantified. The main objective of this research consists on the development of an accurate dynamic model for the simulation of mooring lines, validate it against wave tank tests and then integrate it in a simulation code for floating wind turbines. This experimentally validated tool is finally used to quantify the impact that dynamic mooring models have on the computation of fatigue and ultimate loads of floating wind turbines in comparison with quasi-static tools. This information will be very useful for future designers to decide which mooring model is adequate depending on the platform type and the expected results. The dynamic mooring lines code developed in this research is based in the Finite Element Method and is oriented to the achievement of a computationally efficient code, selecting a Lumped Mass approach. The experimental tests performed for the validation of the code were carried out at the `Ecole Centrale de Nantes (ECN) wave tank in France, consisting of a chain submerged into a water basin, anchored at the bottom of the basin, where the suspension point of the chain was excited with harmonic motions of different periods. The code showed its ability to predict the tension and the motions at several positions along the length of the line with high accuracy. The results demonstrated the importance of capturing the evolution of the mooring dynamics for the prediction of the line tension, especially for the high frequency motions. Finally, the code was used for an extensive assessment of the effect of mooring dynamics on the computation of fatigue and ultimate loads for different floating wind turbines. The loads were computed for three platforms topologies (semisubmersible, spar-buoy and tension leg platform) and compared with the loads provided using a quasi-static mooring model. More than 20,000 load cases were launched and postprocessed following the IEC 61400-3 guideline and fulfilling the conditions that a certification entity would require to an offshore wind turbine designer. The results showed that the impact of mooring dynamics in both fatigue and ultimate loads increases as elements located closer to the platform are evaluated; the blade and the shaft loads are only slightly modified by the mooring dynamics in all the platform designs, the tower base loads can be significantly affected depending on the platform concept and the mooring lines tension strongly depends on the lines dynamics both in fatigue and extreme loads in all the platform concepts evaluated.