13 resultados para Temperature layers
em Universidad Politécnica de Madrid
Resumo:
Reduced performance in Gallium Nitride (GaN) based high electron mobility transistors (HEMTs) as a result of self-heating has been well-documented. A new approach, termed “diamond-before-gate" is shown to improve the thermal budget of the deposition process and enables large area diamond without degrading the gate metal NCD capped devices had a 20% lower channel temperature at equivalent power dissipation.
Resumo:
We study theoretically the stability of two superposed fluid layers heated laterally. The fluids are supposed to be immiscible, the interface undeformable and of infinite horizontal extension. Combined thermocapillary and buoyancy forces give rise to a basic flow when a temperature difference is applied. The calculations are performed for a melt of GaAs under a layer of molten B2 O3 , a configuration of considerable technological importance. Four dif- ferent flow patterns and five temperature configurations are found for the basic state in this system. A linear stability analysis shows that the basic state may be destabilized by oscilla- tory motions leading to the so-called hydrothermal waves. Depending on the relative height of the two layers these hydrothermal waves propagate parallel or perpendicular to the temperature gradient. This analysis reveals that these perturbations can alter significantly the liquid flow in the liquid-encapsulated crystal growth techniques.
Resumo:
It is known that the Amundsenisen Icefield in Southern Spitzbergen (Svalbard achipelago) is temperate with an upper layer of snow and firn. It is an accumulation area and, though ice/water mass balance is clearly subject to time evolution, observation data on the long-term elevation changes over the past 40 years (Nuth et al., 2010) allow to assume constant icefield surface. Within our study of the plausibility of a subglacial lake (Glowacki et al., 2007), here, we focus on the sensitivity of the system to the thermal effect of the firn and snow layers.
Resumo:
The thermal annealing of amorphous tracks of nanometer-size diameter generated in lithium niobate (LiNbO3) by Bromine ions at 45 MeV, i.e., in the electronic stopping regime, has been investigated by RBS/C spectrometry in the temperature range from 250°C to 350°C. Relatively low fluences have been used (<1012 cm−2) to produce isolated tracks. However, the possible effect of track overlapping has been investigated by varying the fluence between 3×1011 cm−2 and 1012 cm−2. The annealing process follows a two-step kinetics. In a first stage (I) the track radius decreases linearly with the annealing time. It obeys an Arrhenius-type dependence on annealing temperature with activation energy around 1.5 eV. The second stage (II) operates after the track radius has decreased down to around 2.5 nm and shows a much lower radial velocity. The data for stage I appear consistent with a solid-phase epitaxial process that yields a constant recrystallization rate at the amorphous-crystalline boundary. HRTEM has been used to monitor the existence and the size of the annealed isolated tracks in the second stage. On the other hand, the thermal annealing of homogeneous (buried) amorphous layers has been investigated within the same temperature range, on samples irradiated with Fluorine at 20 MeV and fluences of ∼1014 cm−2. Optical techniques are very suitable for this case and have been used to monitor the recrystallization of the layers. The annealing process induces a displacement of the crystalline-amorphous boundary that is also linear with annealing time, and the recrystallization rates are consistent with those measured for tracks. The comparison of these data with those previously obtained for the heavily damaged (amorphous) layers produced by elastic nuclear collisions is summarily discussed.
Resumo:
We report on the sensitivity of the superconducting critical temperature (TC) to layer thickness, as well as on TC reproducibility in Mo/Au bilayers. Resistivity measurements on samples with a fixed Au thickness (dAu) and Mo thickness (dMo) ranging from 50 to 250 nm, and with a fixed dMo and different dAu thickness are shown. Experimental data are discussed in the framework of Martinis model, whose application to samples with dAu above their coherence length is analysed in detail. Results show a good coupling between normal and superconducting layers and excellent TC reproducibility, allowing to accurately correlate Mo layer thickness and bilayer TC.
Resumo:
Transformers with parallel windings are commonly used to reduce the losses in the windings. Windings losses depend on the winding positioning and the frequency effects because each winding affects the current sharing of itself and the neighboring windings. In this paper a methodology for determining the connections of the parallel windings that reduces the power losses (and temperature) in the windings of multi-winding transformers is presented. Other applications of the method, such as balanced current sharing and voltage drop reduction are also explored. In this paper a methodology for determining the connections of the parallel windings that reduces the power losses (and temperature) in the windings of multi-winding transformers is presented. Other applications of the method, such as balanced current sharing and voltage drop reduction are also explored.
Resumo:
This work is devoted to the theoretical study of the stability of two superposed horizontal liquid layers bounded by two solid planes and subjected to a horizontal temperature gradient. The liquids are supposed to be immiscible with a nondeformable interface. The forces acting on the system are buoyancy and interfacial tension. Four different flow patterns and temperature profiles are found for the basic state. A linear perturbative analysis with respect to two- and three-dimensional perturbations reveals the existence of three kinds of patterns. Depending on the relative height of both liquids several situations are predicted: either wave propa- gation from cold to the hot regions, or waves propagating in the opposite direction or still stationary longitu- dinal rolls. The behavior of three different pairs of liquids which have been used in experiments on bilayers under vertical gradient by other authors have been examined. The instability mechanisms are discussed and a qualitative interpretation of the different behaviors exhibited by the system is provided. In some configurations it is possible to find a codimension-two point created by the interaction of two Hopf modes with different frequencies and wave numbers. These results suggest to consider two liquid layers as an interesting prototype ? nard-Marangoni problem.
Resumo:
The effect of the temperature on the compressive stress–strain behavior of Al/SiC nanoscale multilayers was studied by means of micropillar compression tests at 23 °C and 100 °C. The multilayers (composed of alternating layers of 60 nm in thickness of nanocrystalline Al and amorphous SiC) showed a very large hardening rate at 23 °C, which led to a flow stress of 3.1 ± 0.2 GPa at 8% strain. However, the flow stress (and the hardening rate) was reduced by 50% at 100 °C. Plastic deformation of the Al layers was the dominant deformation mechanism at both temperatures, but the Al layers were extruded out of the micropillar at 100 °C, while Al plastic flow was constrained by the SiC elastic layers at 23 °C. Finite element simulations of the micropillar compression test indicated the role played by different factors (flow stress of Al, interface strength and friction coefficient) on the mechanical behavior and were able to rationalize the differences in the stress–strain curves between 23 °C and 100 °C.
Resumo:
High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.
Resumo:
Conditions are identified under which analyses of laminar mixing layers can shed light on aspects of turbulent spray combustion. With this in mind, laminar spray-combustion models are formulated for both non-premixed and partially premixed systems. The laminar mixing layer separating a hot-air stream from a monodisperse spray carried by either an inert gas or air is investigated numerically and analytically in an effort to increase understanding of the ignition process leading to stabilization of high-speed spray combustion. The problem is formulated in an Eulerian framework, with the conservation equations written in the boundary-layer approximation and with a one-step Arrhenius model adopted for the chemistry description. The numerical integrations unveil two different types of ignition behaviour depending on the fuel availability in the reaction kernel, which in turn depends on the rates of droplet vaporization and fuel-vapour diffusion. When sufficient fuel is available near the hot boundary, as occurs when the thermochemical properties of heptane are employed for the fuel in the integrations, combustion is established through a precipitous temperature increase at a well-defined thermal-runaway location, a phenomenon that is amenable to a theoretical analysis based on activation-energy asymptotics, presented here, following earlier ideas developed in describing unsteady gaseous ignition in mixing layers. By way of contrast, when the amount of fuel vapour reaching the hot boundary is small, as is observed in the computations employing the thermochemical properties of methanol, the incipient chemical reaction gives rise to a slowly developing lean deflagration that consumes the available fuel as it propagates across the mixing layer towards the spray. The flame structure that develops downstream from the ignition point depends on the fuel considered and also on the spray carrier gas, with fuel sprays carried by air displaying either a lean deflagration bounding a region of distributed reaction or a distinct double-flame structure with a rich premixed flame on the spray side and a diffusion flame on the air side. Results are calculated for the distributions of mixture fraction and scalar dissipation rate across the mixing layer that reveal complexities that serve to identify differences between spray-flamelet and gaseous-flamelet problems.
Resumo:
Los transistores de alta movilidad electrónica basados en GaN han sido objeto de una extensa investigación ya que tanto el GaN como sus aleaciones presentan unas excelentes propiedades eléctricas (alta movilidad, elevada concentración de portadores y campo eléctrico crítico alto). Aunque recientemente se han incluido en algunas aplicaciones comerciales, su expansión en el mercado está condicionada a la mejora de varios asuntos relacionados con su rendimiento y habilidad. Durante esta tesis se han abordado algunos de estos aspectos relevantes; por ejemplo, la fabricación de enhancement mode HEMTs, su funcionamiento a alta temperatura, el auto calentamiento y el atrapamiento de carga. Los HEMTs normalmente apagado o enhancement mode han atraído la atención de la comunidad científica dedicada al desarrollo de circuitos amplificadores y conmutadores de potencia, ya que su utilización disminuiría significativamente el consumo de potencia; además de requerir solamente una tensión de alimentación negativa, y reducir la complejidad del circuito y su coste. Durante esta tesis se han evaluado varias técnicas utilizadas para la fabricación de estos dispositivos: el ataque húmedo para conseguir el gate-recess en heterostructuras de InAl(Ga)N/GaN; y tratamientos basados en flúor (plasma CF4 e implantación de F) de la zona debajo de la puerta. Se han llevado a cabo ataques húmedos en heteroestructuras de InAl(Ga)N crecidas sobre sustratos de Si, SiC y zafiro. El ataque completo de la barrera se consiguió únicamente en las muestras con sustrato de Si. Por lo tanto, se puede deducir que la velocidad de ataque depende de la densidad de dislocaciones presentes en la estructura, ya que el Si presenta un peor ajuste del parámetro de red con el GaN. En relación a los tratamientos basados en flúor, se ha comprobado que es necesario realizar un recocido térmico después de la fabricación de la puerta para recuperar la heteroestructura de los daños causados durante dichos tratamientos. Además, el estudio de la evolución de la tensión umbral con el tiempo de recocido ha demostrado que en los HEMTs tratados con plasma ésta tiende a valores más negativos al aumentar el tiempo de recocido. Por el contrario, la tensión umbral de los HEMTs implantados se desplaza hacia valores más positivos, lo cual se atribuye a la introducción de iones de flúor a niveles más profundos de la heterostructura. Los transistores fabricados con plasma presentaron mejor funcionamiento en DC a temperatura ambiente que los implantados. Su estudio a alta temperatura ha revelado una reducción del funcionamiento de todos los dispositivos con la temperatura. Los valores iniciales de corriente de drenador y de transconductancia medidos a temperatura ambiente se recuperaron después del ciclo térmico, por lo que se deduce que dichos efectos térmicos son reversibles. Se han estudiado varios aspectos relacionados con el funcionamiento de los HEMTs a diferentes temperaturas. En primer lugar, se han evaluado las prestaciones de dispositivos de AlGaN/GaN sobre sustrato de Si con diferentes caps: GaN, in situ SiN e in situ SiN/GaN, desde 25 K hasta 550 K. Los transistores con in situ SiN presentaron los valores más altos de corriente drenador, transconductancia, y los valores más bajos de resistencia-ON, así como las mejores características en corte. Además, se ha confirmado que dichos dispositivos presentan gran robustez frente al estrés térmico. En segundo lugar, se ha estudiado el funcionamiento de transistores de InAlN/GaN con diferentes diseños y geometrías. Dichos dispositivos presentaron una reducción casi lineal de los parámetros en DC en el rango de temperaturas de 25°C hasta 225°C. Esto se debe principalmente a la dependencia térmica de la movilidad electrónica, y también a la reducción de la drift velocity con la temperatura. Además, los transistores con mayores longitudes de puerta mostraron una mayor reducción de su funcionamiento, lo cual se atribuye a que la drift velocity disminuye más considerablemente con la temperatura cuando el campo eléctrico es pequeño. De manera similar, al aumentar la distancia entre la puerta y el drenador, el funcionamiento del HEMT presentó una mayor reducción con la temperatura. Por lo tanto, se puede deducir que la degradación del funcionamiento de los HEMTs causada por el aumento de la temperatura depende tanto de la longitud de la puerta como de la distancia entre la puerta y el drenador. Por otra parte, la alta densidad de potencia generada en la región activa de estos transistores conlleva el auto calentamiento de los mismos por efecto Joule, lo cual puede degradar su funcionamiento y Habilidad. Durante esta tesis se ha desarrollado un simple método para la determinación de la temperatura del canal basado en medidas eléctricas. La aplicación de dicha técnica junto con la realización de simulaciones electrotérmicas han posibilitado el estudio de varios aspectos relacionados con el autocalentamiento. Por ejemplo, se han evaluado sus efectos en dispositivos sobre Si, SiC, y zafiro. Los transistores sobre SiC han mostrado menores efectos gracias a la mayor conductividad térmica del SiC, lo cual confirma el papel clave que desempeña el sustrato en el autocalentamiento. Se ha observado que la geometría del dispositivo tiene cierta influencia en dichos efectos, destacando que la distribución del calor generado en la zona del canal depende de la distancia entre la puerta y el drenador. Además, se ha demostrado que la temperatura ambiente tiene un considerable impacto en el autocalentamiento, lo que se atribuye principalmente a la dependencia térmica de la conductividad térmica de las capas y sustrato que forman la heterostructura. Por último, se han realizado numerosas medidas en pulsado para estudiar el atrapamiento de carga en HEMTs sobre sustratos de SiC con barreras de AlGaN y de InAlN. Los resultados obtenidos en los transistores con barrera de AlGaN han presentado una disminución de la corriente de drenador y de la transconductancia sin mostrar un cambio en la tensión umbral. Por lo tanto, se puede deducir que la posible localización de las trampas es la región de acceso entre la puerta y el drenador. Por el contrario, la reducción de la corriente de drenador observada en los dispositivos con barrera de InAlN llevaba asociado un cambio significativo en la tensión umbral, lo que implica la existencia de trampas situadas en la zona debajo de la puerta. Además, el significativo aumento del valor de la resistencia-ON y la degradación de la transconductancia revelan la presencia de trampas en la zona de acceso entre la puerta y el drenador. La evaluación de los efectos del atrapamiento de carga en dispositivos con diferentes geometrías ha demostrado que dichos efectos son menos notables en aquellos transistores con mayor longitud de puerta o mayor distancia entre puerta y drenador. Esta dependencia con la geometría se puede explicar considerando que la longitud y densidad de trampas de la puerta virtual son independientes de las dimensiones del dispositivo. Finalmente se puede deducir que para conseguir el diseño óptimo durante la fase de diseño no sólo hay que tener en cuenta la aplicación final sino también la influencia que tiene la geometría en los diferentes aspectos estudiados (funcionamiento a alta temperatura, autocalentamiento, y atrapamiento de carga). ABSTRACT GaN-based high electron mobility transistors have been under extensive research due to the excellent electrical properties of GaN and its related alloys (high carrier concentration, high mobility, and high critical electric field). Although these devices have been recently included in commercial applications, some performance and reliability issues need to be addressed for their expansion in the market. Some of these relevant aspects have been studied during this thesis; for instance, the fabrication of enhancement mode HEMTs, the device performance at high temperature, the self-heating and the charge trapping. Enhancement mode HEMTs have become more attractive mainly because their use leads to a significant reduction of the power consumption during the stand-by state. Moreover, they enable the fabrication of simpler power amplifier circuits and high-power switches because they allow the elimination of negativepolarity voltage supply, reducing significantly the circuit complexity and system cost. In this thesis, different techniques for the fabrication of these devices have been assessed: wet-etching for achieving the gate-recess in InAl(Ga)N/GaN devices and two different fluorine-based treatments (CF4 plasma and F implantation). Regarding the wet-etching, experiments have been carried out in InAl(Ga)N/GaN grown on different substrates: Si, sapphire, and SiC. The total recess of the barrier was achieved after 3 min of etching in devices grown on Si substrate. This suggests that the etch rate can critically depend on the dislocations present in the structure, since the Si exhibits the highest mismatch to GaN. Concerning the fluorine-based treatments, a post-gate thermal annealing was required to recover the damages caused to the structure during the fluorine-treatments. The study of the threshold voltage as a function of this annealing time has revealed that in the case of the plasma-treated devices it become more negative with the time increase. On the contrary, the threshold voltage of implanted HEMTs showed a positive shift when the annealing time was increased, which is attributed to the deep F implantation profile. Plasma-treated HEMTs have exhibited better DC performance at room temperature than the implanted devices. Their study at high temperature has revealed that their performance decreases with temperature. The initial performance measured at room temperature was recovered after the thermal cycle regardless of the fluorine treatment; therefore, the thermal effects were reversible. Thermal issues related to the device performance at different temperature have been addressed. Firstly, AlGaN/GaN HEMTs grown on Si substrate with different cap layers: GaN, in situ SiN, or in situ SiN/GaN, have been assessed from 25 K to 550 K. In situ SiN cap layer has been demonstrated to improve the device performance since HEMTs with this cap layer have exhibited the highest drain current and transconductance values, the lowest on-resistance, as well as the best off-state characteristics. Moreover, the evaluation of thermal stress impact on the device performance has confirmed the robustness of devices with in situ cap. Secondly, the high temperature performance of InAlN/GaN HEMTs with different layouts and geometries have been assessed. The devices under study have exhibited an almost linear reduction of the main DC parameters operating in a temperature range from room temperature to 225°C. This was mainly due to the thermal dependence of the electron mobility, and secondly to the drift velocity decrease with temperature. Moreover, HEMTs with large gate length values have exhibited a great reduction of the device performance. This was attributed to the greater decrease of the drift velocity for low electric fields. Similarly, the increase of the gate-to-drain distance led to a greater reduction of drain current and transconductance values. Therefore, this thermal performance degradation has been found to be dependent on both the gate length and the gate-to-drain distance. It was observed that the very high power density in the active region of these transistors leads to Joule self-heating, resulting in an increase of the device temperature, which can degrade the device performance and reliability. A simple electrical method have been developed during this work to determine the channel temperature. Furthermore, the application of this technique together with the performance of electro-thermal simulations have enabled the evaluation of different aspects related to the self-heating. For instance, the influence of the substrate have been confirmed by the study of devices grown on Si, SiC, and Sapphire. HEMTs grown on SiC substrate have been confirmed to exhibit the lowest self-heating effects thanks to its highest thermal conductivity. In addition to this, the distribution of the generated heat in the channel has been demonstrated to be dependent on the gate-to-drain distance. Besides the substrate and the geometry of the device, the ambient temperature has also been found to be relevant for the self-heating effects, mainly due to the temperature-dependent thermal conductivity of the layers and the substrate. Trapping effects have been evaluated by means of pulsed measurements in AlGaN and InAIN barrier devices. AlGaN barrier HEMTs have exhibited a de crease in drain current and transconductance without measurable threshold voltage change, suggesting the location of the traps in the gate-to-drain access region. On the contrary, InAIN barrier devices have showed a drain current associated with a positive shift of threshold voltage, which indicated that the traps were possibly located under the gate region. Moreover, a significant increase of the ON-resistance as well as a transconductance reduction were observed, revealing the presence of traps on the gate-drain access region. On the other hand, the assessment of devices with different geometries have demonstrated that the trapping effects are more noticeable in devices with either short gate length or the gate-to-drain distance. This can be attributed to the fact that the length and the trap density of the virtual gate are independent on the device geometry. Finally, it can be deduced that besides the final application requirements, the influence of the device geometry on the performance at high temperature, on the self-heating, as well as on the trapping effects need to be taken into account during the device design stage to achieve the optimal layout.
Resumo:
Composite laminates on the nanoscale have shown superior hardness and toughness, but little is known about their high temperature behavior. The mechanical properties (elastic modulus and hardness) were measured as a function of temperature by means of nanoindentation in Al/SiC nanolaminates, a model metal–ceramic nanolaminate fabricated by physical vapor deposition. The influence of the Al and SiC volume fraction and layer thicknesses was determined between room temperature and 150 °C and, the deformation modes were analyzed by transmission electron microscopy, using a focused ion beam to prepare cross-sections through selected indents. It was found that ambient temperature deformation was controlled by the plastic flow of the Al layers, constrained by the SiC, and the elastic bending of the SiC layers. The reduction in hardness with temperature showed evidence of the development of interface-mediated deformation mechanisms, which led to a clear influence of layer thickness on the hardness.
Resumo:
This letter presents a novel temperature sensor, which consists of an interdigitated comb electrode structure with a micrometric-scale size, nanometric metallic layer, and nematic liquid crystal (NLC) film. This sensor exploits the permittivity dependence of the NLC with temperature and principle of electrical conductivity above the percolation threshold in thin film metallic layers. The latter has been demonstrated to increase the temperature sensitivity considerably. The high impedance input reduces the power dissipation, and the high enough voltage output makes it easy to measure the output signal with high precision. The operation principle and fabrication process as well as the characterization of the temperature sensor are presented. Experimental results show that the device offers a sensitivity of 9 mV/°C and is dependent on the applied voltage. This is six times greater than the same structure without the use of a nanometric layer.