17 resultados para Technological Discontinuities

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Competency-Based Education in the context of training is intended as a comprehensive approach that seeks to link education with the productive sector and increase the potential of individuals, in the face of social, economic, political and cultural transformations that suffers the world and the contemporary society; this is how educational services associated to the rural area takes part of the global revalorization of the role of learning and knowledge. Under the competence approach and taking into account the CONOCER model, we design a Technological Master from the “Colegio de Postgraduados” identifying the competences needed so that the students, professional from different areas of knowledge, managed to develop them, but mainly to achieve the goal of developing the capacities of producers in Mexican rural area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows the development of a science-technological knowledge transfer model in Mexico, as a means to boost the limited relations between the scientific and industrial environments. The proposal is based on the analysis of eight organizations (research centers and firms) with varying degrees of skill in the practice of science-technological knowledge transfer, and carried out by the case study approach. The analysis highlights the synergistic use of the organizational and technological capabilities of each organization, as a means to identification of the knowledge transfer mechanisms best suited to enabling the establishment of cooperative processes, and achieve the R&D and innovation activities results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

decade has raised the interest among the research community on the acceptance and use of these systems by both teachers and students. At first, the implementation of LMS was based on their technical design and the adaptation of the learning processes to the virtual environment, neglecting students’ characteristics when the systems were deployed, which led to expensive and failing implementations. The Unified Theory of Acceptance and Use of Technology (UTAUT) proposes a framework which allows the study of the acceptance and use of technology that takes into consideration the students’ characteristics and how they affect the acceptance and the degree of use of educational technology. This study questions the role of the user’s attitude towards use of LMS and uses the UTAUT to examine the moderating effect of technological culture in the adoption of LMS in Spain. The results from the comparison and analysis of three different models confirm the relevance of attitude towards use as an antecedent of intention to use the system, as well as the important moderating effect of gender and technological culture. The discussion of results suggests the need for a more in-depth analysis and interrelations of cultural dimensions in the adoption of educational technologies and learning management systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared thermography IR is a technique, which allows us to get rapidly and non-invasive thermal images from objects or human beings. (Barnes, 1967). In Medicine, its usefulness as diagnosis tool was accepted decades ago (BenEliyahu, 1990), but other techniques with a higher efficiency -such as magnetic resonance or x-rays- ousted it. Nevertheless, the technological improvements on thermographic cameras and new studies on sport injuries are reinforcing new applications (Ring, 2006)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose the use of a highly-accurate three-dimensional (3D) fully automatic hp-adaptive finite element method (FEM) for the characterization of rectangular waveguide discontinuities. These discontinuities are either the unavoidable result of mechanical/electrical transitions or deliberately introduced in order to perform certain electrical functions in modern communication systems. The proposed numerical method combines the geometrical flexibility of finite elements with an accuracy that is often superior to that provided by semi-analytical methods. It supports anisotropic refinements on irregular meshes with hanging nodes, and isoparametric elements. It makes use of hexahedral elements compatible with high-order H(curl)H(curl) discretizations. The 3D hp-adaptive FEM is applied for the first time to solve a wide range of 3D waveguide discontinuity problems of microwave communication systems in which exponential convergence of the error is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the end of 2013 and during the following two years, 20 kt of CO2sc are planned to be injected in a saline reservoir (1500 m depth) at the Hontomín site (NE Spain). The target aquifers are Lower Jurassic limestone formations which are sealed by Lower Cretaceous clay units at the Hontomín site (NE Spain). The injection of CO2 is part of the activities committed in the Technology Development phase of the EC-funded OXYCFB300 project (European Energy Program for Recovery – EEPR, http://www.compostillaproject.eu), which include CO2 injection strategies, risk assessment, and testing and validating monitoring methodologies and techniques. Among the monitoring works, the project is intended to prove that present-day technology is able to monitor the evolution of injected CO2 in the reservoir and to detect potential leakage. One of the techniques is the measurement of CO2 flux at the soil–atmosphere interface, which includes campaigns before, during and after the injection operations. In this work soil CO2 flux measurements in the vicinity of oil borehole, drilled in the eighties and named H-1 to H-4, and injection and monitoring wells were performed using an accumulation chamber equipped with an IR sensor. Seven surveys were carried out from November 2009 to summer 2011. More than 4000 measurements were used to determine the baseline flux of CO2 and its seasonal variations. The measured values were low (from 5 to 13 g m−2 day−1) and few outliers were identified, mainly located close to the H-2 oil well. Nevertheless, these values cannot be associated to a deep source of CO2, being more likely related to biological processes, i.e. soil respiration. No anomalies were recognized close to the deep fault system (Ubierna Fault) detected by geophysical investigations. There, the CO2 flux is indeed as low as other measurement stations. CO2 fluxes appear to be controlled by the biological activity since the lowest values were recorded during autumn-winter seasons and they tend to increase in warm periods. Two reference CO2 flux values (UCL50 of 5 g m−2 d−1 for non-ploughed areas in autumn–winter seasons and 3.5 and 12 g m−2 d−1 for in ploughed and non-ploughed areas, respectively, in spring–summer time, and UCL99 of 26 g m−2 d−1 for autumn–winter in not-ploughed areas and 34 and 42 g m−2 d−1 for spring–summer in ploughed and not-ploughed areas, respectively) were calculated. Fluxes higher than these reference values could be indicative of possible leakage during the operational and post-closure stages of the storage project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion-generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion- generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays "Flood Resilient (FRe) Building Technological Products" is an undefined concept, and concerned FRe solutions cannot be even easily identified. There is an interest in offering an identification and classification of the referred products, since it will be useful for stakeholders and populations at flood risk for adopting the most adequate protections when facing floods. There are many barriers for the implementation of "FRe building technological products", and particularly their standardization is still a major challenge. To put into contact such solutions with final customers, it appears necessary to protocolize them all. The classification effort achieved in this document shall be considered as a necessary preliminary step in order to open the road to the market to FRe building technological solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is based on the following postulates taken from a book recently published by this author (Sáez-Vacas, 1990(1)): a) technological innovation in a company is understood to be the process and set of changes that the company undergoes as a result of a specific type of technology; b) the incorporation of technology in the company does not necessarily result in innovation, modernization and progress; c) the very words "modernization" and "progress" are completely bereft of any meaning if isolated from the concept of complexity in its broadest sense, including the human factor. Turning to office technology in specific, the problem of managing office technology for business innovation purposes can be likened to the problem of managing third level complexity, following the guidelines of a three-level complexity model proposed by the author some years ago

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta carta al editor, el profesor D. Enrique Alarcón Álvarez comenta el artículo de Thomas J. Rudolphi "An implementation of the Boundary Element Method for zoned media with stress discontinuities" publicado en la revista "International Journal for Numerical Methods in Engineering" Vol. 19, Nº 1, pags. 1–15, enero 1983.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principle of complexity as the evolution vector of the gothic style was an idea largely developed by Paul Frankl. The high complexity reached in the 15th and 16th centuries was possible thanks to the geometrical resources developed in the workshops of the medieval stonemasons. The search for more sophisticated designs was possible also with the higher standardization, so that the most complex ribbed vault could be built with ribs that had all the same curvature and with voussoirs that were therefore identical. Spanish Gothic architecture has been deeply studied from a historical and artistic point of view. The present paper, as a complement to these analyses, aims to point out some of the geometrical methods and technological improvements that late medieval masons were able to develop. In that way, some selected vaults have been measured, in order to study their geometry and design process. Also scale models of some vaults have been built at the Escuela de Arquitectura (Madrid) to validate these geometrical principles. More than just a research method, the scale models allow to understand the medieval construction techniques, and they are a powerful pedagogical tool with which pupils can reach a rewarding experience based on the “medieval-way” praxis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, international cooperation processes have become a key mechanism for companies to internationalise their innovative activities, par ticularly in the case of small businesses whose size reduces their possibilities of developing internationalisation strategies autonomously in the same way as larger companies. In Spain, the existence of two parallel programmes with similar structures oriented towards Europe (EUREKA) and Latin America (IBEROEKA) raises the question as to whether the fact that companies participate in only one (unipolar) or both (bipolar) of these programmes is the result of a selection process, which, in turn, results in the existence of different collectives with different efficiency parameters. The aim of this study is to provide a comparative analysis based on the final reports of Spanish companies that have participated in the EUREKA programme. Two groups of companies were compared: one comprising companies that have only had international experience in Europe (EUREKA); and another formed by companies that have also carried out IBEROEKA projects. The conclusions confirm that the behaviour of both groups of companies differs substantially and reveal the importance of geographical perspective in the analysis of international cooperation in technology. This disparate behaviour is a relevant aspect that must be taken into account when designing policies to promote international technological cooperation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical basis for evaluating shear strength in rock joints is presented and used to derive an equation that governs the relationship between tangential and normal stress on the joint during situations of slippage between the joint faces. The dependent variables include geometric dilatancy, the instantaneous friction angle, and a parameter that considers joint surface roughness. The effect roughness is studied, and the aforementioned formula is used to analyse joints under different conditions. A mathematical expression is deduced that explains Barton's value for the joint roughness coefficient (JRC) according to the roughness geometry. In particular, when the Hoek and Brown failure criterion is used for a rock in the contact with the surface roughness plane, it is possible to determine the shear strength of the joint as a function of the relationship between the uniaxial compressive strength of the wall with the normal stress acting on the wall. Finally, theoretical results obtained for the geometry of a three-dimensional joint are compared with those of the Barton's formulation