11 resultados para Teaching of teachers
em Universidad Politécnica de Madrid
Resumo:
The traditional teaching methods used for training civil engineers are currently being called into question as a result of the new knowledge and skills now required by the labor market. In addition, the European Higher Education Area is requesting that students be given a greater say in their learning. In the subject called Construction and Building Materials at the Civil Engineering School of the Universidad Politécnica de Madrid, a path was set three academic years ago to lead to an improvement in traditional teaching by introducing active methodologies. The innovations are based on cooperative learning, new technologies, and continuous assessment. The writers’ proposal is to offer their experience as a contribution to the debate on how students can be encouraged to acquire the skills currently demanded from a civil engineer, though not overlooking solid, top-quality training. From the outcomes obtained, it can be concluded that using new teaching techniques to supplement a traditional approach provides more opportunities for students to learn while boosting their motivation. In our case, the introduction of these changes has resulted in an increased pass rate of 29% on average, when such a figure is considered in the light of the mean value of passes during the last decade.
Resumo:
This paper presents a methodology for the incorporation of a Virtual Reality development applied to the teaching of manufacturing processes, namely the group of machining processes in numerical control of machine tools. The paper shows how it is possible to supplement the teaching practice through virtual machine-tools whose operation is similar to the 'real' machines while eliminating the risks of use for both users and the machines.
Resumo:
In this article we present a didactic experience developed by the GIE (Group of Educational Innovation) “Pensamiento Matemático” of the Polytechnics University of Madrid (UPM), in order to bring secondary students and university students closer to Mathematics. It deals with the development of a virtual board game called Mate-trivial. The mechanics of the game is to win points by going around the board which consists of four types of squares identified by colours: “Statistics and Probability”, “Calculus and Analysis”, “Algebra and Geometry” and “Arithmetic and Number Theory ”. When landing on a square, a question of its category is set out: a correct answer wins 200 points, if wrong it loses 100 points, and not answering causes no effect on the points, but all the same, two minutes out of the 20 minutes that each game lasts are lost. For the game to be over it is necessary, before those 20 minutes run out, to reach the central square and succeed in the final task: four chained questions, one of each type, which must be all answered correctly. It is possible to choose between two levels to play: Level 1, for pre-university students and Level 2 for university students. A prototype of the game is available at the website “Aula de Pensamiento Matemático” developed by the GIE: http://innovacioneducativa.upm.es/pensamientomatematico/. This activity lies within a set of didactic actions which the GIE is developing in the framework of the project “Collaborative Strategies between University and Secondary School Education for the teaching and learning of Mathematics: An Application to solve problems while playing”, a transversal project financed by the UPM.
Resumo:
The Reinforcement of Building Structures is one of the topics of the Master in Building Innovation Technology (MBIT) of Universidad Politécnica de Madrid (UPM). Since the beginning of the delivery of this master, case studies have been chosen as the teaching methodology. For the 2011-2012 course the online education of this subject was implemented, instead of the classical learning based on attendance. Through ICT’s (Information and Communication Technologies) students are provided with much more and more selective information than through the classical learning. ICT’s can be used for search, enquiries and reporting. Using the online tools has been proved, through the results obtained and based on the surveys made amongst students, to be a successful experience.
Resumo:
Electric vehicles constitute a multidisciplinary subject that involves disciplines such as automotive, mechanical, electrical and control engineering. Due to this multidisciplinary technical nature, practical teaching methodologies are of special relevance. Paradoxically, in the past, the training of engineers specializing in this area has lacked the practical component represented by field tests, due to the difficulty of accessing real systems. This paper presents an educational project specifically designed for the teaching and training of engineering students with different backgrounds and experience. The teaching methodology focuses on the topology of electric traction drives and their control. It includes two stages, a simulation computer model and a scaled laboratory workbench that comprises a traction electrical drive coupled to a vehicle emulator. With this equipment, the effectiveness of different traction control strategies can be analyzed from the point of view of energy efficiency, robustness, easiness of implementation and acoustic noise.
Resumo:
Twelve years ago a group of teachers began to work in educational innovation. In 2002 we received an award for educational innovation, undergoing several stages. Recently, we have decided to focus on being teachers of educational innovation. We create a web scheduled in Joomla offering various services, among which we emphasize teaching courses of educational innovation. The “Instituto de Ciencias de la Educacion” in “Universidad Politécnica de Madrid” has recently incorporated two of these courses, which has been highly praised. These courses will be reissued in new calls, and we are going to offer them to more Universities. We are in contact with several institutions, radio programs, the UNESCO Chair of Mining and Industrial Heritage, and we are working with them in the creation of heritage courses using methods that we have developed.
Resumo:
The main objective of this article is to focus on the analysis of teaching techniques, ranging from the use of the blackboard and chalk in old traditional classes, using slides and overhead projectors in the eighties and use of presentation software in the nineties, to the video, electronic board and network resources nowadays. Furthermore, all the aforementioned, is viewed under the different mentalities in which the teacher conditions the student using the new teaching technique, improving soft skills but maybe leading either to encouragement or disinterest, and including the lack of educational knowledge consolidation at scientific, technology and specific levels. In the same way, we study the process of adaptation required for teachers, the differences in the processes of information transfer and education towards the student, and even the existence of teachers who are not any longer appealed by their work due which has become much simpler due to new technologies and the greater ease in the development of classes due to the criteria described on the new Grade Programs adopted by the European Higher Education Area. Moreover, it is also intended to understand the evolution of students’ profiles, from the eighties to present time, in order to understand certain attitudes, behaviours, accomplishments and acknowledgements acquired over the semesters within the degree Programs. As an Educational Innovation Group, another key question also arises. What will be the learning techniques in the future?. How these evolving matters will affect both positively and negatively on the mentality, attitude, behaviour, learning, achievement of goals and satisfaction levels of all elements involved in universities’ education? Clearly, this evolution from chalk to the electronic board, the three-dimensional view of our works and their sequence, greatly facilitates the understanding and adaptation later on to the business world, but does not answer to the unknowns regarding the knowledge and the full development of achievement’s indicators in basic skills of a degree. This is the underlying question which steers the roots of the presented research.
Resumo:
The European Union has been promoting linguistic diversity for many years as one of its main educational goals. This is an element that facilitates student mobility and student exchanges between different universities and countries and enriches the education of young undergraduates. In particular, a higher degree of competence in the English language is becoming essential for engineers, architects and researchers in general, as English has become the lingua franca that opens up horizons to internationalisation and the transfer of knowledge in today’s world. Many experts point to the Integrated Approach to Contents and Foreign Languages System as being an option that has certain benefits over the traditional method of teaching a second language that is exclusively based on specific subjects. This system advocates teaching the different subjects in the syllabus in a language other than one’s mother tongue, without prioritising knowledge of the language over the subject. This was the idea that in the 2009/10 academic year gave rise to the Second Language Integration Programme (SLI Programme) at the Escuela Arquitectura Técnica in the Universidad Politécnica Madrid (EUATM-UPM), just at the beginning of the tuition of the new Building Engineering Degree, which had been adapted to the European Higher Education Area (EHEA) model. This programme is an interdisciplinary initiative for the set of subjects taught during the semester and is coordinated through the Assistant Director Office for Educational Innovation. The SLI Programme has a dual goal; to familiarise students with the specific English terminology of the subject being taught, and at the same time improve their communication skills in English. A total of thirty lecturers are taking part in the teaching of eleven first year subjects and twelve in the second year, with around 120 students who have voluntarily enrolled in a special group in each semester. During the 2010/2011 academic year the degree of acceptance and the results of the SLI Programme have been monitored. Tools have been designed to aid interdisciplinary coordination and to analyse satisfaction, such as coordination records and surveys. The results currently available refer to the first and second year and are divided into specific aspects of the different subjects involved and into general aspects of the ongoing experience.
Resumo:
The engineer must have sufficient theoretical knowledge to be applied to solve specific problems, with the necessary capacity to simplify these approaches, and taking into account factors such as speed, simplicity, quality and economy. In Geology, its ultimate goal is the exploration of the history of the geological events through observation, deduction, reasoning and, in exceptional cases by the direct underground exploration or experimentation. Experimentation is very limited in Geology. Reproduction laboratory of certain phenomena or geological processes is difficult because both time and space become a large scale. For this reason, some Earth Sciences are in a nearly descriptive stage whereas others closest to the experimental, Geophysics and Geochemistry, have assimilated progress experienced by the physics and chemistry. Thus, Anglo-Saxon countries clearly separate Engineering Geology from Geological Engineering, i.e. Applied Geology to the Geological Engineering concepts. Although there is a big professional overlap, the first one corresponds to scientific approach, while the last one corresponds to a technological one. Applied Geology to Engineering could be defined as the Science and Applied Geology to the design, construction and performance of engineering infrastructures in and field geology discipline. There has been much discussion on the primacy of theory over practice. Today prevails the exaggeration of practice, but you get good workers and routine and mediocre teachers. This idea forgets too that teaching problem is a problem of right balance. The approach of the action lines on the European Higher Education Area (EHEA) framework provides for such balance. Applied Geology subject represents the first real contact with the physical environment with the practice profession and works. Besides, the situation of the topic in the first trace of Study Plans for many students implies the link to other subjects and topics of the career (tunnels, dams, groundwater, roads, etc). This work analyses in depth the justification of such practical trips. It shows the criteria and methods of planning and the result which manifests itself in pupils. Once practical trips experience developed, the objective work tries to know about results and changes on student’s motivation in learning perspective. This is done regardless of the outcome of their knowledge achievements assessed properly and they are not subject to such work. For this objective, it has been designed a survey about their motivation before and after trip. Survey was made by the Unidad Docente de Geología Aplicada of the Departamento de Ingeniería y Morfología del Terreno (Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid). It was completely anonymous. Its objective was to collect the opinion of the student as a key agent of learning and teaching of the subject. All the work takes place under new teaching/learning criteria approach at the European framework in Higher Education. The results are exceptionally good with 90% of student’s participation and with very high scores in a number of questions as the itineraries, teachers and visited places (range of 4.5 to 4.2 in a 5 points scale). The majority of students are very satisfied (average of 4.5 in a 5 points scale).
Resumo:
One of the fundamental aspects in the adaptation of the teaching to the European higher education is changing based models of teacher education to models based on student learning. In this work we present an educational experience developed with the teaching method based on the case method, with a clearly multidisciplinary. The experience has been developed in the teaching of analysis and verification of safety rails. This is a multidisciplinary field that presents great difficulties during their teaching. The use of the case method has given good results in the competences achieved by students
Resumo:
The technique of reinforcement of wooden floors is a matter clearly multidisciplinary. The teaching of the subject using the "traditional" method, explaining the theory first and then proposing and solving problems has not been successful. This paper discusses the results of a teaching experiencie. It has been the teaching of the subject by the case method. The results are clearly superior to those obtained with the traditional methodology.