9 resultados para Teaching of foreign languages

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional teaching methods used for training civil engineers are currently being called into question as a result of the new knowledge and skills now required by the labor market. In addition, the European Higher Education Area is requesting that students be given a greater say in their learning. In the subject called Construction and Building Materials at the Civil Engineering School of the Universidad Politécnica de Madrid, a path was set three academic years ago to lead to an improvement in traditional teaching by introducing active methodologies. The innovations are based on cooperative learning, new technologies, and continuous assessment. The writers’ proposal is to offer their experience as a contribution to the debate on how students can be encouraged to acquire the skills currently demanded from a civil engineer, though not overlooking solid, top-quality training. From the outcomes obtained, it can be concluded that using new teaching techniques to supplement a traditional approach provides more opportunities for students to learn while boosting their motivation. In our case, the introduction of these changes has resulted in an increased pass rate of 29% on average, when such a figure is considered in the light of the mean value of passes during the last decade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a methodology for the incorporation of a Virtual Reality development applied to the teaching of manufacturing processes, namely the group of machining processes in numerical control of machine tools. The paper shows how it is possible to supplement the teaching practice through virtual machine-tools whose operation is similar to the 'real' machines while eliminating the risks of use for both users and the machines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we present a didactic experience developed by the GIE (Group of Educational Innovation) “Pensamiento Matemático” of the Polytechnics University of Madrid (UPM), in order to bring secondary students and university students closer to Mathematics. It deals with the development of a virtual board game called Mate-trivial. The mechanics of the game is to win points by going around the board which consists of four types of squares identified by colours: “Statistics and Probability”, “Calculus and Analysis”, “Algebra and Geometry” and “Arithmetic and Number Theory ”. When landing on a square, a question of its category is set out: a correct answer wins 200 points, if wrong it loses 100 points, and not answering causes no effect on the points, but all the same, two minutes out of the 20 minutes that each game lasts are lost. For the game to be over it is necessary, before those 20 minutes run out, to reach the central square and succeed in the final task: four chained questions, one of each type, which must be all answered correctly. It is possible to choose between two levels to play: Level 1, for pre-university students and Level 2 for university students. A prototype of the game is available at the website “Aula de Pensamiento Matemático” developed by the GIE: http://innovacioneducativa.upm.es/pensamientomatematico/. This activity lies within a set of didactic actions which the GIE is developing in the framework of the project “Collaborative Strategies between University and Secondary School Education for the teaching and learning of Mathematics: An Application to solve problems while playing”, a transversal project financed by the UPM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Reinforcement of Building Structures is one of the topics of the Master in Building Innovation Technology (MBIT) of Universidad Politécnica de Madrid (UPM). Since the beginning of the delivery of this master, case studies have been chosen as the teaching methodology. For the 2011-2012 course the online education of this subject was implemented, instead of the classical learning based on attendance. Through ICT’s (Information and Communication Technologies) students are provided with much more and more selective information than through the classical learning. ICT’s can be used for search, enquiries and reporting. Using the online tools has been proved, through the results obtained and based on the surveys made amongst students, to be a successful experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles constitute a multidisciplinary subject that involves disciplines such as automotive, mechanical, electrical and control engineering. Due to this multidisciplinary technical nature, practical teaching methodologies are of special relevance. Paradoxically, in the past, the training of engineers specializing in this area has lacked the practical component represented by field tests, due to the difficulty of accessing real systems. This paper presents an educational project specifically designed for the teaching and training of engineering students with different backgrounds and experience. The teaching methodology focuses on the topology of electric traction drives and their control. It includes two stages, a simulation computer model and a scaled laboratory workbench that comprises a traction electrical drive coupled to a vehicle emulator. With this equipment, the effectiveness of different traction control strategies can be analyzed from the point of view of energy efficiency, robustness, easiness of implementation and acoustic noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el futuro, la gestión del tráfico aéreo (ATM, del inglés air traffic management) requerirá un cambio de paradigma, de la gestión principalmente táctica de hoy, a las denominadas operaciones basadas en trayectoria. Un incremento en el nivel de automatización liberará al personal de ATM —controladores, tripulación, etc.— de muchas de las tareas que realizan hoy. Las personas seguirán siendo el elemento central en la gestión del tráfico aéreo del futuro, pero lo serán mediante la gestión y toma de decisiones. Se espera que estas dos mejoras traigan un incremento en la eficiencia de la gestión del tráfico aéreo que permita hacer frente al incremento previsto en la demanda de transporte aéreo. Para aplicar el concepto de operaciones basadas en trayectoria, el usuario del espacio aéreo (la aerolínea, piloto, u operador) y el proveedor del servicio de navegación aérea deben negociar las trayectorias mediante un proceso de toma de decisiones colaborativo. En esta negociación, es necesaria una forma adecuada de compartir dichas trayectorias. Compartir la trayectoria completa requeriría un gran ancho de banda, y la trayectoria compartida podría invalidarse si cambiase la predicción meteorológica. En su lugar, podría compartirse una descripción de la trayectoria independiente de las condiciones meteorológicas, de manera que la trayectoria real se pudiese calcular a partir de dicha descripción. Esta descripción de la trayectoria debería ser fácil de procesar usando un programa de ordenador —ya que parte del proceso de toma de decisiones estará automatizado—, pero también fácil de entender para un operador humano —que será el que supervise el proceso y tome las decisiones oportunas—. Esta tesis presenta una serie de lenguajes formales que pueden usarse para este propósito. Estos lenguajes proporcionan los medios para describir trayectorias de aviones durante todas las fases de vuelo, desde la maniobra de push-back (remolcado hasta la calle de rodaje), hasta la llegada a la terminal del aeropuerto de destino. También permiten describir trayectorias tanto de aeronaves tripuladas como no tripuladas, incluyendo aviones de ala fija y cuadricópteros. Algunos de estos lenguajes están estrechamente relacionados entre sí, y organizados en una jerarquía. Uno de los lenguajes fundamentales de esta jerarquía, llamado aircraft intent description language (AIDL), ya había sido desarrollado con anterioridad a esta tesis. Este lenguaje fue derivado de las ecuaciones del movimiento de los aviones de ala fija, y puede utilizarse para describir sin ambigüedad trayectorias de este tipo de aeronaves. Una variante de este lenguaje, denominada quadrotor AIDL (QR-AIDL), ha sido desarrollada en esta tesis para permitir describir trayectorias de cuadricópteros con el mismo nivel de detalle. Seguidamente, otro lenguaje, denominado intent composite description language (ICDL), se apoya en los dos lenguajes anteriores, ofreciendo más flexibilidad para describir algunas partes de la trayectoria y dejar otras sin especificar. El ICDL se usa para proporcionar descripciones genéricas de maniobras comunes, que después se particularizan y combinan para formar descripciones complejas de un vuelo. Otro lenguaje puede construirse a partir del ICDL, denominado flight intent description language (FIDL). El FIDL especifica requisitos de alto nivel sobre las trayectorias —incluyendo restricciones y objetivos—, pero puede utilizar características del ICDL para proporcionar niveles de detalle arbitrarios en las distintas partes de un vuelo. Tanto el ICDL como el FIDL han sido desarrollados en colaboración con Boeing Research & Technology Europe (BR&TE). También se ha desarrollado un lenguaje para definir misiones en las que interactúan varias aeronaves, el mission intent description language (MIDL). Este lenguaje se basa en el FIDL y mantiene todo su poder expresivo, a la vez que proporciona nuevas semánticas para describir tareas, restricciones y objetivos relacionados con la misión. En ATM, los movimientos de un avión en la superficie de aeropuerto también tienen que ser monitorizados y gestionados. Otro lenguaje formal ha sido diseñado con este propósito, llamado surface movement description language (SMDL). Este lenguaje no pertenece a la jerarquía de lenguajes descrita en el párrafo anterior, y se basa en las clearances (autorizaciones del controlador) utilizadas durante las operaciones en superficie de aeropuerto. También proporciona medios para expresar incertidumbre y posibilidad de cambios en las distintas partes de la trayectoria. Finalmente, esta tesis explora las aplicaciones de estos lenguajes a la predicción de trayectorias y a la planificación de misiones. El concepto de trajectory language processing engine (TLPE) se usa en ambas aplicaciones. Un TLPE es una función de ATM cuya principal entrada y salida se expresan en cualquiera de los lenguajes incluidos en la jerarquía descrita en esta tesis. El proceso de predicción de trayectorias puede definirse como una combinación de TLPEs, cada uno de los cuales realiza una pequeña sub-tarea. Se le ha dado especial importancia a uno de estos TLPEs, que se encarga de generar el perfil horizontal, vertical y de configuración de la trayectoria. En particular, esta tesis presenta un método novedoso para la generación del perfil vertical. El proceso de planificar una misión también se puede ver como un TLPE donde la entrada se expresa en MIDL y la salida consiste en cierto número de trayectorias —una por cada aeronave disponible— descritas utilizando FIDL. Se ha formulado este problema utilizando programación entera mixta. Además, dado que encontrar caminos óptimos entre distintos puntos es un problema fundamental en la planificación de misiones, también se propone un algoritmo de búsqueda de caminos. Este algoritmo permite calcular rápidamente caminos cuasi-óptimos que esquivan todos los obstáculos en un entorno urbano. Los diferentes lenguajes formales definidos en esta tesis pueden utilizarse como una especificación estándar para la difusión de información entre distintos actores de la gestión del tráfico aéreo. En conjunto, estos lenguajes permiten describir trayectorias con el nivel de detalle necesario en cada aplicación, y se pueden utilizar para aumentar el nivel de automatización explotando esta información utilizando sistemas de soporte a la toma de decisiones. La aplicación de estos lenguajes a algunas funciones básicas de estos sistemas, como la predicción de trayectorias, han sido analizadas. ABSTRACT Future air traffic management (ATM) will require a paradigm shift from today’s mainly tactical ATM to trajectory-based operations (TBOs). An increase in the level of automation will also relieve humans —air traffic control officers (ATCOs), flight crew, etc.— from many of the tasks they perform today. Humans will still be central in this future ATM, as decision-makers and managers. These two improvements (TBOs and increased automation) are expected to provide the increase in ATM performance that will allow coping with the expected increase in air transport demand. Under TBOs, trajectories are negotiated between the airspace user (an airline, pilot, or operator) and the air navigation service provider (ANSP) using a collaborative decision making (CDM) process. A suitable method for sharing aircraft trajectories is necessary for this negotiation. Sharing a whole trajectory would require a high amount of bandwidth, and the shared trajectory might become invalid if the weather forecast changed. Instead, a description of the trajectory, decoupled from the weather conditions, could be shared, so that the actual trajectory could be computed from this trajectory description. This trajectory description should be easy to process using a computing program —as some of the CDM processes will be automated— but also easy to understand for a human operator —who will be supervising the process and making decisions. This thesis presents a series of formal languages that can be used for this purpose. These languages provide the means to describe aircraft trajectories during all phases of flight, from push back to arrival at the gate. They can also describe trajectories of both manned and unmanned aircraft, including fixedwing and some rotary-wing aircraft (quadrotors). Some of these languages are tightly interrelated and organized in a language hierarchy. One of the key languages in this hierarchy, the aircraft intent description language (AIDL), had already been developed prior to this thesis. This language was derived from the equations of motion of fixed-wing aircraft, and can provide an unambiguous description of fixed-wing aircraft trajectories. A variant of this language, the quadrotor AIDL (QR-AIDL), is developed in this thesis to allow describing a quadrotor aircraft trajectory with the same level of detail. Then, the intent composite description language (ICDL) is built on top of these two languages, providing more flexibility to describe some parts of the trajectory while leaving others unspecified. The ICDL is used to provide generic descriptions of common aircraft manoeuvres, which can be particularized and combined to form complex descriptions of flight. Another language is built on top of the ICDL, the flight intent description language (FIDL). The FIDL specifies high-level requirements on trajectories —including constraints and objectives—, but can use features of the ICDL to provide arbitrary levels of detail in different parts of the flight. The ICDL and FIDL have been developed in collaboration with Boeing Research & Technology Europe (BR&TE). Also, the mission intent description language (MIDL) has been developed to allow describing missions involving multiple aircraft. This language is based on the FIDL and keeps all its expressive power, while it also provides new semantics for describing mission tasks, mission objectives, and constraints involving several aircraft. In ATM, the movement of aircraft while on the airport surface also has to be monitored and managed. Another formal language has been designed for this purpose, denoted surface movement description language (SMDL). This language does not belong to the language hierarchy described above, and it is based on the clearances used in airport surface operations. Means to express uncertainty and mutability of different parts of the trajectory are also provided. Finally, the applications of these languages to trajectory prediction and mission planning are explored in this thesis. The concept of trajectory language processing engine (TLPE) is used in these two applications. A TLPE is an ATM function whose main input and output are expressed in any of the languages in the hierarchy described in this thesis. A modular trajectory predictor is defined as a combination of multiple TLPEs, each of them performing a small subtask. Special attention is given to the TLPE that builds the horizontal, vertical, and configuration profiles of the trajectory. In particular, a novel method for the generation of the vertical profile is presented. The process of planning a mission can also be seen as a TLPE, where the main input is expressed in the MIDL and the output consists of a number of trajectory descriptions —one for each aircraft available in the mission— expressed in the FIDL. A mixed integer linear programming (MILP) formulation for the problem of assigning mission tasks to the available aircraft is provided. In addition, since finding optimal paths between locations is a key problem to mission planning, a novel path finding algorithm is presented. This algorithm can compute near-shortest paths avoiding all obstacles in an urban environment in very short times. The several formal languages described in this thesis can serve as a standard specification to share trajectory information among different actors in ATM. In combination, these languages can describe trajectories with the necessary level of detail for any application, and can be used to increase automation by exploiting this information using decision support tools (DSTs). Their applications to some basic functions of DSTs, such as trajectory prediction, have been analized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this work is to describe the case of an online Java Programming course for engineering students to learn computer programming and to practice other non-technicalabilities: online training, self-assessment, teamwork and use of foreign languages. It is important that students develop confidence and competence in these skills, which will be required later in their professional tasks and/or in other engineering courses (life-long learning). Furthermore, this paper presents the pedagogical methodology, the results drawn from this experience and an objective performance comparison with another conventional (face-to-face) Java course.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Union has been promoting linguistic diversity for many years as one of its main educational goals. This is an element that facilitates student mobility and student exchanges between different universities and countries and enriches the education of young undergraduates. In particular, a higher degree of competence in the English language is becoming essential for engineers, architects and researchers in general, as English has become the lingua franca that opens up horizons to internationalisation and the transfer of knowledge in today’s world. Many experts point to the Integrated Approach to Contents and Foreign Languages System as being an option that has certain benefits over the traditional method of teaching a second language that is exclusively based on specific subjects. This system advocates teaching the different subjects in the syllabus in a language other than one’s mother tongue, without prioritising knowledge of the language over the subject. This was the idea that in the 2009/10 academic year gave rise to the Second Language Integration Programme (SLI Programme) at the Escuela Arquitectura Técnica in the Universidad Politécnica Madrid (EUATM-UPM), just at the beginning of the tuition of the new Building Engineering Degree, which had been adapted to the European Higher Education Area (EHEA) model. This programme is an interdisciplinary initiative for the set of subjects taught during the semester and is coordinated through the Assistant Director Office for Educational Innovation. The SLI Programme has a dual goal; to familiarise students with the specific English terminology of the subject being taught, and at the same time improve their communication skills in English. A total of thirty lecturers are taking part in the teaching of eleven first year subjects and twelve in the second year, with around 120 students who have voluntarily enrolled in a special group in each semester. During the 2010/2011 academic year the degree of acceptance and the results of the SLI Programme have been monitored. Tools have been designed to aid interdisciplinary coordination and to analyse satisfaction, such as coordination records and surveys. The results currently available refer to the first and second year and are divided into specific aspects of the different subjects involved and into general aspects of the ongoing experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Union has been promoting linguistic diversity for many years as one of its main educational goals. This is an element that facilitates student mobility and student exchanges between different universities and countries and enriches the education of young undergraduates. In particular,a higher degree of competence in the English language is becoming essential for engineers, architects and researchers in general, as English has become the lingua franca that opens up horizons to internationalisation and the transfer of knowledge in today’s world. Many experts point to the Integrated Approach to Contents and Foreign Languages System as being an option that has certain benefits over the traditional method of teaching a second language that is exclusively based on specific subjects. This system advocates teaching the different subjects in the syllabus in a language other than one’s mother tongue, without prioritising knowledge of the language over the subject. This was the idea that in the 2009/10 academic year gave rise to the Second Language Integration Programme (SLI Programme) at the Escuela Arquitectura Tecnica in the Universidad Politecnica Madrid (EUATM-UPM), just at the beginning of the tuition of the new Building Engineering Degree, which had been adapted to the European Higher Education Area (EHEA) model. This programme is an interdisciplinary initiative for the set of subjects taught during the semester and is coordinated through the Assistant Director Office for Educational Innovation. The SLI Programme has a dual goal; to familiarise students with the specific English terminology of the subject being taught, and at the same time improve their communication skills in English. A total of thirty lecturers are taking part in the teaching of eleven first year subjects and twelve in the second year, with around 120 students who have voluntarily enrolled in a special group in each semester. During the 2010/2011 academic year the degree of acceptance and the results of the SLI Programme are being monitored. Tools have been designed to aid interdisciplinary coordination and to analyse satisfaction, such as coordination records and surveys. The results currently available refer to the first semester of the year and are divided into specific aspects of the different subjects involved and into general aspects of the ongoing experience.