36 resultados para TUNNEL-JUNCTIONS
em Universidad Politécnica de Madrid
Resumo:
An n(++)-GaAs/p(++)-AlGaAs tunnel junction with a peak current density of 10 100Acm(-2) is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500Acm(-2) and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations.
Resumo:
One of the key components of highly efficient multi-junction concentrator solar cells is the tunnel junction interconnection. In this paper, an improved 3D distributed model is presented that considers real operation regimes in a tunnel junction. This advanced model is able to accurately simulate the operation of the solar cell at high concentraions at which the photogenerated current surpasses the peak current of the tunnel junctionl Simulations of dual-junction solar cells were carried out with the improved model to illustrate its capabilities and the results have been correlated with experimental data reported in the literature. These simulations show that under certain circumstances, the solar cells short circuit current may be slightly higher than the tunnel junction peak current without showing the characteristic dip in the J-V curve. This behavior is caused by the lateral current spreading toward dark regions, which occurs through the anode/p-barrier of the tunnel junction.
Resumo:
Tunnel junctions are key for developing multijunction solar cells (MJSC) for ultra-high concentration applications. We have developed a highly conductive, high bandgap p + + -AlGaAs/n + + -GaInP tunnel junction with a peak tunneling current density for as-grown and thermal annealed devices of 996 A/cm 2 and 235 A/cm 2, respectively. The J–V characteristics of the tunnel junction after thermal annealing, together with its behavior at MJSCs typical operation temperatures, indicate that this tunnel junction is a suitable candidate for ultra-high concentrator MJSC designs. The benefits of the optical transparency are also assessed for a lattice-matched GaInP/GaInAs/Ge triple junction solar cell, yielding a current density increase in the middle cell of 0.506 mA/cm 2 with respect to previous designs.
Resumo:
In the last few decades there has been great interest in III-V multijunction solar cells (MJSC) for concentrator applications due to their promise to significantly reduce the cost of electricity. Being formed by series connection of several solar cells with different bandgaps, a key role in a MJSC structure is played by the tunnel junctions (TJ) aimed to implement such series connection. Essentially, tunnel junctions (tunnel diodes or Esaki diodes) are thin, heavily doped p-n junctions where quantum tunneling plays a key role as a conduction mechanism. Such devices were discovered by Nobel laureate Leo Esaki at the end of 1950. The key feature of tunnel junctions for their application in MJSC is that, as long as quantum tunneling is the dominant conduction mechanism, they exhibit a linear I-V dependence until the peak tunneling current (Jp) is reached. This initial ohmic region in the I-V curve is ideal for implementing low-loss interconnections between the subcells with different energy bandgaps that constitute a MJSC.
Advances in the modeling, characterization and reliability of concentrator multijunction solar cells
Resumo:
Los sistemas de concentración fotovoltaica (CPV) parecen ser una de las vías más prometedoras para generar electricidad a gran escala a precios competitivos. La investigación actual se centra en aumentar la eficiencia y la concentración de los sistemas para abaratar costes. Al mismo tiempo se investiga sobre la fiabilidad de los diferentes componentes que integran un sistema de concentración, ya que para que los sistemas de concentración sean competitivos es necesario que tengan una fiabilidad al menos similar a los sistemas basados en células de silicio. En la presente tesis doctoral se ha llevado a cabo el estudio de aspectos avanzados de células solares multi-unión diseñadas para trabajar a concentraciones ultra-altas. Para ello, se ha desarrollado un modelo circuital tridimensional distribuido con el que simular el comportamiento de las células solares triple-unión bajo distintas condiciones de funcionamiento, así mismo se ha realizado una caracterización avanzada de este tipo de células para comprender mejor su modo de operación y así poder contribuir a mejorar su eficiencia. Finalmente, se han llevado a cabo ensayos de vida acelerados en células multiunión comerciales para conocer la fiabilidad de este tipo de células solares. Para la simulación de células solares triple-unión se ha desarrollado en la presente tesis doctoral un modelo circuital tridimensinal distribuido el cuál integra una descripción completa de la unión túnel. De este modo, con el modelo desarrollado, hemos podido simular perfiles de luz sobre la célula solar que hacen que la densidad de corriente fotogenerada sea mayor a la densidad de corriente pico de la unión túnel. El modelo desarrollado también contempla la distribución lateral de corriente en las capas semiconductoras que componen y rodean la unión túnel. Por tanto, se ha podido simular y analizar el efecto que tiene sobre el funcionamiento de la célula solar que los concentradores ópticos produzcan perfiles de luz desuniformes, tanto en nivel de irradiancia como en el contenido espectral de la luz (aberración cromática). Con el objetivo de determinar cuáles son los mecanismos de recombinación que están limitando el funcionamiento de cada subcélula que integra una triple-unión, y así intentar reducirlos, se ha llevado a cabo la caracterización eléctrica de células solares monouni ón idénticas a las subcelulas de una triple-unión. También se ha determinado la curva corriente-tensión en oscuridad de las subcélulas de GaInP y GaAs de una célula dobleunión mediante la utilización de un teorema de reciprocidad electro-óptico. Finalmente, se ha analizado el impacto de los diferentes mecanismos de recombinación en el funcionamiento de la célula solar triple-unión en concentración. Por último, para determinar la fiabilidad de este tipo de células, se ha llevado a cabo un ensayo de vida acelerada en temperatura en células solares triple-unión comerciales. En la presente tesis doctoral se describe el diseño del ensayo, el progreso del mismo y los datos obtenidos tras el análisis de los resultados preliminares. Abstract Concentrator photovoltaic systems (CPV) seem to be one of the most promising ways to generate electricity at competitive prices. Nowadays, the research is focused on increasing the efficiency and the concentration of the systems in order to reduce costs. At the same time, another important area of research is the study of the reliability of the different components which make up a CPV system. In fact, in order for a CPV to be cost-effective, it should have a warranty at least similar to that of the systems based on Si solar cells. In the present thesis, we will study in depth the behavior of multijunction solar cells under ultra-high concentration. With this purpose in mind, a three-dimensional circuital distributed model which is able to simulate the behavior of triple-junction solar cells under different working conditions has been developed. Also, an advanced characterization of these solar cells has been carried out in order to better understand their behavior and thus contribute to improving efficiency. Finally, accelerated life tests have been carried out on commercial lattice-matched triple-junction solar cells in order to determine their reliability. In order to simulate triple-junction solar cells, a 3D circuital distributed model which integrates a full description of the tunnel junction has been developed. We have analyzed the behavior of the multijunction solar cell under light profiles which cause the current density photo-generated in the solar cell to be higher than the tunnel junction’s peak current density. The advanced model developed also takes into account the lateral current spreading through the semiconductor layers which constitute and surround the tunnel junction. Therefore, the effects of non-uniform light profiles, in both irradiance and the spectral content produced by the concentrators on the solar cell, have been simulated and analyzed. In order to determine which recombination mechanisms are limiting the behavior of each subcell in a triple-junction stack, and to try to reduce them when possible, an electrical characterization of single-junction solar cells that resemble the subcells in a triplejunction stack has been carried out. Also, the dark I-V curves of the GaInP and GaAs subcells in a dual-junction solar cell have been determined by using an electro-optical reciprocity theorem. Finally, the impact of the different recombination mechanisms on the behavior of the triple-junction solar cell under concentration has been analyzed. In order to determine the reliability of these solar cells, a temperature accelerated life test has been carried out on commercial triple-junction solar cells. In the present thesis, the design and the evolution of the test, as well as the data obtained from the analysis of the preliminary results, are presented.
Resumo:
Progressing beyond 3-junction inverted-metamorphic multijunction solar cells grown on GaAs substrates, to 4-junction devices, requires the development of high quality metamorphic 0.7 eV GaInAs solar cells. Once accomplished, the integration of this subcell into a full, Monolithic, series connected, 4J-IMM structure demands the development of a metamorphic tunnel junction lattice matched to the 1eV GaInAs subcell. Moreover, the 0.7 eV junction adds about 2 hours of growth time to the structure, implying a heavier annealing of the subcells and tunnel junctions grown first. The final 4J structure is above 20 Pm thick, with about half of this thickness used by the metamorphic buffers required to change the lattice constant throughout the structure. Thinning of these buffers would help reduce the total thickness of the 4J structure to decrease its growth cost and the annealing time. These three topics: development of a metamorphic tunnel junction for the 4th junction, analysis of the annealing, and thinning of the structure, are tackled in this work. The results presented show the successful implementation of an antimonide-based tunnel junction for the 4th junction and of pathways to mitigate the impact of annealing and reduce the thickness of the metamorphic buffers.
Resumo:
We present results for quadruple-junction inverted metamorphic (4J-IMM) devices under the concentrated direct spectrum and analyze the present limitations to performance. The devices integrate lattice-matched subcells with rear heterojunctions, as well as lattice-mismatched subcells with low threading dislocation density. To interconnect the subcells, thermally stable lattice-matched tunnel junctions are used, as well as a metamorphic GaAsSb/GaInAs tunnel junction between the lattice-mismatched subcells. A broadband antireflection coating is used, as well as a front metal grid designed for high concentration operation. The best device has a peak efficiency of (43.8 ± 2.2)% at 327-sun concentration, as measured with a spectrally adjustable flash simulator, and maintains an efficiency of (42.9 ± 2.1)% at 869 suns, which is the highest concentration measured. The Voc increases from 3.445 V at 1-sun to 4.10 V at 327-sun concentration, which indicates high material quality in all of the subcells. The subcell voltages are analyzed using optical modeling, and the present device limitations and pathways to improvement are discussed. Although further improvements are possible, the 4J-IMM structure is clearly capable of very high efficiency at concentration, despite the complications arising from utilizing lattice-mismatched subcells.
Resumo:
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.
Resumo:
A reliability approach to tunnel support design is presented in this paper. The aim of the work is the incorporation of classical Level II techniques to the current design method based on the study of the ground-support interaction diagram.
Resumo:
Components of a Wind Tunnel Balance: Design and Calibration
Resumo:
Accurate characterization of the radio channel in tunnels is of great importance for new signaling and train control communications systems. To model this environment, measurements have been taken at 2.4 GHz in a real environment in Madrid subway. The measurements were carried out with four base station transmitters installed in a 2-km tunnel and using a mobile receiver installed on a standard train. First, with an optimum antenna configuration, all the propagation characteristics of a complex subway environment, including near shadowing, path loss,shadow fading, fast fading, level crossing rate (LCR), and average fade duration (AFD), have been measured and computed. Thereafter, comparisons of propagation characteristics in a double-track tunnel (9.8-m width) and a single-track tunnel (4.8-m width) have been made. Finally, all the measurement results have been shown in a complete table for accurate statistical modeling.
Resumo:
We have analyzed a resonant behavior in the dielectric constant associated to the barrier of YBa2Cu3O7 (YBCO) grain boundary Josephson junctions (GBJJs) fabricated on a wide variety of bicrystalline substrates: 12° [0 0 1] tilt asymmetric, 24° [0 0 1] tilt asymmetric, 24° [0 0 1] tilt symmetric, 24° [1 0 0] tilt asymmetric, 45° [1 0 0] tilt asymmetric and 24° [0 0 1] tilt symmetric +45° [1 0 0] tilt asymmetric bicrystals. The resonance analysis allows us to estimate a more appropriate value of the relative dielectric constant, and so a more adequate value for the length L of the normal N region assuming a SNINS model for the barrier. In this work, the L dependence on the critical current density Jc has been investigated. This analysis makes possible a single representation for all the substrate geometries independently on around which axes the rotation is produced to generate the grain boundary. On the other hand, no clear evidences exist on the origin of the resonance. The resonance frequency is in the order of 1011 Hz, pointing to a phonon dynamic influence on the resonance mechanism. Besides, its position is affected by the oxygen content of the barrier: a shift at low frequencies is observed when the misorientation angle increases.
Resumo:
In this study we analyze the electrical behavior of a junction formed by an ultraheavily Ti implanted Si layer processed by a Pulsed Laser Melting (PLM) and the non implanted Si substrate. This electrical behavior exhibits an electrical decoupling effect in this bilayer that we have associated to an Intermediate Band (IB) formation in the Ti supersaturated Si layer. Time-of-flight secondary ion mass spectrometry (ToFSIMS) measurements show a Ti depth profile with concentrations well above the theoretical limit required to the IB formation. Sheet resistance and Hall mobility measurements in the van der Pauw configuration of these bilayers exhibit a clear dependence with the different measurement currents introduced (1menor queA-1mA). We find that the electrical transport properties measured present an electrical decoupling effect in the bilayer as function of the temperature. The dependence of this effect with the injected current could be explained in terms of an additional current flow in the junction from the substrate to the IB layer and in terms of the voltage dependence in the junction with the measurement current.
Resumo:
The possibility of application of structural reliability theory to the computation of the safety margins of excavated tunnels is presented. After a brief description of the existing procedures the limitations of the safety coefficients such as they usually defined, the proposed limit states are precised as well as the random variables and the applied methodology. Also presented are simple examples, some of them based in actual cases, and to end, some conclusions are established the most important one being the probability of using the method to solve the inverse problem of identification.
Resumo:
The use of probabilistic methods to analyse reliability of structures is being applied to a variety of engineering problems due to the possibility of establishing the failure probability on rational grounds. In this paper we present the application of classical reliability theory to analyse the safety of underground tunnels.