7 resultados para TRANSVERSELY ISOTROPIC CONSTITUENTS
em Universidad Politécnica de Madrid
Resumo:
In this paper we present a spline-based hyperelastic model for incompressible transversely isotropic solids. The formulation is based on the Sussman-Bathe model for isotropic hyperelastic materials. We extend this model to transversely isotropic materials following a similar procedure. Our formulation is able to exactly represent the prescribed behavior for isotropic hyperelastic solids, recovering the Sussman-Bathe model, and to exactly or closely approximate the prescribed behavior for transversely isotropic solids. We have employed our formulation to predict, very accurately, the experimental results of Diani et al. for a transversely isotropic hyperelastic nonlinear material.
Resumo:
We consider the finite radially symmetric deformation of a circular cylindrical tube of a homogeneous transversely isotropic elastic material subject to axial stretch, radial deformation and torsion, supported by axial load, internal pressure and end moment. Two different directions of transverse isotropy are considered: the radial direction and an arbitrary direction in planes normal locally to the radial direction, the only directions for which the considered deformation is admissible in general. In the absence of body forces, formulas are obtained for the internal pressure, and the resultant axial load and torsional moment on the ends of the tube in respect of a general strain-energy function. For a specific material model of transversely isotropic elasticity, and material and geometrical parameters, numerical results are used to illustrate the dependence of the pressure, (reduced) axial load and moment on the radial stretch and a measure of the torsional deformation for a fixed value of the axial stretch.
Resumo:
Based on our needs, that is to say, through precise simulation of the impact phenomena that may occur inside a jet engine turbine with an explicit non-linear finite element code, four new material models are postulated. Each one of is calibrated for four high-performance alloys that can be encountered in a modern jet engine. A new uncoupled material model for high strain and ballistic is proposed. Based on a Johnson-Cook type model, the proposed formulation introduces the effect of the third deviatoric invariant by means of three different Lode angle dependent functions. The Lode dependent functions are added to both plasticity and failure models. The postulated model is calibrated for a 6061-T651 aluminium alloy with data taken from the literature. The fracture pattern predictability of the JCX material model is shown performing numerical simulations of various quasi-static and dynamic tests. As an extension of the above-mentioned model, a modification in the thermal softening behaviour due to phase transformation temperatures is developed (JCXt). Additionally, a Lode angle dependent flow stress is defined. Analysing the phase diagram and high temperature tests performed, phase transformation temperatures of the FV535 stainless steel are determined. The postulated material model constants for the FV535 stainless steel are calibrated. A coupled elastoplastic-damage material model for high strain and ballistic applications is presented (JCXd). A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson-Cook failure criterion. The weakening in the elastic law and in the Johnson-Cook type constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. A transversely isotropic material model for directionally solidified alloys is presented. The proposed yield function is based a single linear transformation of the stress tensor. The linear operator weighs the degree of anisotropy of the yield function. The elastic behaviour, as well as the hardening, are considered isotropic. To model the hardening, a Johnson-Cook type relation is adopted. A material vector is included in the model implementation. The failure is modelled with the Cockroft-Latham failure criterion. The material vector allows orienting the reference orientation in any other that the user may need. The model is calibrated for the MAR-M 247 directionally solidified nickel-base superalloy.
Resumo:
Esta investigación presenta un modelo de material para aleaciones de solidificación direccional que poseen un comportamiento mecánico transversalmente isótropo. Se han realizado una serie de ensayos de tracción sobre probetas cilíndricas a varias velocidades de deformación y a varias temperaturas sobre la superaleación de base níquel de solidificación direccional MAR-M 247 con objeto de conocer su comportamiento mecánico. Los ensayos se realizaron sobre probetas cilíndricas cuya dirección longitudinal forma 0º y 90º con la de la orientación de crecimiento de los granos. Para representar el comportamiento plástico anisótropo se ha formulado una función de plastificación de forma no cuadrática basada en la transformación lineal de tensores. Con el propósito de simplificar en todo lo posible el modelo se ha considerado un endurecimiento isótropo. Para probar la validez del modelo propuesto se ha implementado el mismo como modelo de material definido por el usuario en el código no lineal de elementos finitos LS-DYNA. In this research a material model for directionally solidified alloys with transversely isotropic mechanic behavior is presented. In order to characterize the mechanical behavior of the Mar-M 247 directionally solidified nickel based superalloy, tensile tests of axisymmetric smooth specimens were performed at various strain rates and temperatures. The specimens were machined making sure that the longitudinal axis of them was forming 0º and 90º with the grain growth orientation. To represent the plastic flow, a non-quadratic anisotropic function based on linear transformation of tensors has been formulated. For the sake of simplicity isotropic strain hardening of the material has been considered. To prove the validity of the model, a material subroutine has been implemented in LS-DYNA non-linear finite element code as a user defined material model.
Resumo:
In this paper we describe a new promising procedure to model hyperelastic materials from given stress-strain data. The main advantage of the proposed method is that the user does not need to have a relevant knowledge of hyperelasticity, large strains or hyperelastic constitutive modelling. The engineer simply has to prescribe some stress strain experimental data (whether isotropic or anisotropic) in also user prescribed stress and strain measures and the model almost exactly replicates the experimental data. The procedure is based on the piece-wise splines model by Sussman and Bathe and may be easily generalized to transversely isotropic and orthotropic materials. The model is also amenable of efficient finite element implementation. In this paper we briefly describe the general procedure, addressing the advantages and limitations. We give predictions for arbitrary ?experimental data? and also give predictions for actual experiments of the behaviour of living soft tissues. The model may be also implemented in a general purpose finite element program. Since the obtained strain energy functions are analytic piece-wise functions, the constitutive tangent may be readily derived in order to be used for implicit static problems, where the equilibrium iterations must be performed and the material tangent is needed in order to preserve the quadratic rate of convergence of Newton procedures.
Resumo:
En este trabajo se han analizado varios problemas en el contexto de la elasticidad no lineal basándose en modelos constitutivos representativos. En particular, se han analizado problemas relacionados con el fenómeno de perdida de estabilidad asociada con condiciones de contorno en el caso de material reforzados con fibras. Cada problema se ha formulado y se ha analizado por separado en diferentes capítulos. En primer lugar se ha mostrado el análisis del gradiente de deformación discontinuo para un material transversalmente isótropo, en particular, el modelo del material considerado consiste de una base neo-Hookeana isótropa incrustada con fibras de refuerzo direccional caracterizadas con un solo parámetro. La solución de este problema se vincula con instabilidades que dan lugar al mecanismo de fallo conocido como banda de cortante. La perdida de elipticidad de las ecuaciones diferenciales de equilibrio es una condición necesaria para que aparezca este tipo de soluciones y por tanto las inestabilidades asociadas. En segundo lugar se ha analizado una deformación combinada de extensión, inación y torsión de un tubo cilíndrico grueso donde se ha encontrado que la deformación citada anteriormente puede ser controlada solo para determinadas direcciones de las fibras refuerzo. Para entender el comportamiento elástico del tubo considerado se ha ilustrado numéricamente los resultados obtenidos para las direcciones admisibles de las fibras de refuerzo bajo la deformación considerada. En tercer lugar se ha estudiado el caso de un tubo cilíndrico grueso reforzado con dos familias de fibras sometido a cortante en la dirección azimutal para un modelo de refuerzo especial. En este problema se ha encontrado que las inestabilidades que aparecen en el material considerado están asociadas con lo que se llama soluciones múltiples de la ecuación diferencial de equilibrio. Se ha encontrado que el fenómeno de instabilidad ocurre en un estado de deformación previo al estado de deformación donde se pierde la elipticidad de la ecuación diferencial de equilibrio. También se ha demostrado que la condición de perdida de elipticidad y ^W=2 = 0 (la segunda derivada de la función de energía con respecto a la deformación) son dos condiciones necesarias para la existencia de soluciones múltiples. Finalmente, se ha analizado detalladamente en el contexto de elipticidad un problema de un tubo cilíndrico grueso sometido a una deformación combinada en las direcciones helicoidal, axial y radial para distintas geotermias de las fibras de refuerzo . In the present work four main problems have been addressed within the framework of non-linear elasticity based on representative constitutive models. Namely, problems related to the loss of stability phenomena associated with boundary value problems for fibre-reinforced materials. Each of the considered problems is formulated and analysed separately in different chapters. We first start with the analysis of discontinuous deformation gradients for a transversely isotropic material under plane deformation. In particular, the material model is an augmented neo-Hookean base with a simple unidirectional reinforcement characterised by a single parameter. The solution of this problem is related to material instabilities and it is associated with a shear band-type failure mode. The loss of ellipticity of the governing differential equations is a necessary condition for the existence of these material instabilities. The second problem involves a detailed analysis of the combined non-linear extension, inflation and torsion of a thick-walled circular cylindrical tube where it has been found that the aforementioned deformation is controllable only for certain preferred directions of transverse isotropy. Numerical results have been illustrated to understand the elastic behaviour of the tube for the admissible preferred directions under the considered deformation. The third problem deals with the analysis of a doubly fibre-reinforced thickwalled circular cylindrical tube undergoing pure azimuthal shear for a special class of the reinforcing model where multiple non-smooth solutions emerge. The associated instability phenomena are found to occur prior to the point where the nominal stress tensor changes monotonicity in a particular direction. It has been also shown that the loss of ellipticity condition that arises from the equilibrium equation and ^W=2 = 0 (the second derivative of the strain-energy function with respect to the deformation) are equivalent necessary conditions for the emergence of multiple solutions for the considered material. Finally, a detailed analysis in the basis of the loss of ellipticity of the governing differential equations for a combined helical, axial and radial elastic deformations of a fibre-reinforced circular cylindrical tube is carried out.
Resumo:
The paper discusses the dispersion relation for longitudinal electron waves propagating in a collisionless, homogeneous isotropic plasma, which contains both Maxwellian and suprathermal electrons. I t is found that the dispersion curve, known to have two separate branches for zero suprathermal energy spread,depends sensitively on this quantity. As the energy half-width of the suprathermal population increases, the branches approach each other until they touch at a connexion point, for a small critical value of that half-width. The topology of the dispersion curves is different for half-widths above and below critical; and this can affect the use of wave-propagation measurements as a diagnostic technique for the determination of the electron distribution function. Both the distance between the branches and spatial damping near the connexion frequency depend on the half-width, if below critical, and can be used to determine it. The theory is applied to experimental data.