3 resultados para TEMPERATURE PHOTOSENSITIZED OXIDATION

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays one of the challenges of materials science is to find new technologies that will be able to make the most of renewable energies. An example of new proposals in this field are the intermediate-band (IB) materials, which promise higher efficiencies in photovoltaic applications (through the intermediate band solar cells), or in heterogeneous photocatalysis (using nanoparticles of them, for the light-induced degradation of pollutants or for the efficient photoevolution of hydrogen from water). An IB material consists in a semiconductor in which gap a new level is introduced [1], the intermediate band (IB), which should be partially filled by electrons and completely separated of the valence band (VB) and of the conduction band (CB). This scheme (figure 1) allows an electron from the VB to be promoted to the IB, and from the latter to the CB, upon absorption of photons with energy below the band gap Eg, so that energy can be absorbed in a wider range of the solar spectrum and a higher current can be obtained without sacrificing the photovoltage (or the chemical driving force) corresponding to the full bandgap Eg, thus increasing the overall efficiency. This concept, applied to photocatalysis, would allow using photons of a wider visible range while keeping the same redox capacity. It is important to note that this concept differs from the classic photocatalyst doping principle, which essentially tries just to decrease the bandgap. This new type of materials would keep the full bandgap potential but would use also lower energy photons. In our group several IB materials have been proposed, mainly for the photovoltaic application, based on extensively doping known semiconductors with transition metals [2], examining with DFT calculations their electronic structures. Here we refer to In2S3 and SnS2, which contain octahedral cations; when doped with Ti or V an IB is formed according to quantum calculations (see e.g. figure 2). We have used a solvotermal synthesis method to prepare in nanocrystalline form the In2S3 thiospinel and the layered compound SnS2 (which when undoped have bandgaps of 2.0 and 2.2 eV respectively) where the cation is substituted by vanadium at a ?10% level. This substitution has been studied, characterizing the materials by different physical and chemical techniques (TXRF, XRD, HR-TEM/EDS) (see e.g. figure 3) and verifying with UV spectrometry that this substitution introduces in the spectrum the sub-bandgap features predicted by the calculations (figure 4). For both sulphide type nanoparticles (doped and undoped) the photocatalytic activity was studied by following at room temperature the oxidation of formic acid in aqueous suspension, a simple reaction which is easily monitored by UV-Vis spectroscopy. The spectral response of the process is measured using a collection of band pass filters that allow only some wavelengths into the reaction system. Thanks to this method the spectral range in which the materials are active in the photodecomposition (which coincides with the band gap for the undoped samples) can be checked, proving that for the vanadium substituted samples this range is increased, making possible to cover all the visible light range. Furthermore it is checked that these new materials are more photocorrosion resistant than the toxic CdS witch is a well know compound frequently used in tests of visible light photocatalysis. These materials are thus promising not only for degradation of pollutants (or for photovoltaic cells) but also for efficient photoevolution of hydrogen from water; work in this direction is now being pursued.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Probabilistic Safety Assessment (PSA) is being developed for a steam-methane reforming hydrogen production plant linked to a High-Temperature Gas Cooled Nuclear Reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute’s (JAERI) High Temperature Test Reactor (HTTR) prototype in Japan. This study has two major objectives: calculate the risk to onsite and offsite individuals, and calculate the frequency of different types of damage to the complex. A simplified HAZOP study was performed to identify initiating events, based on existing studies. The initiating events presented here are methane pipe break, helium pipe break, and PPWC heat exchanger pipe break. Generic data was used for the fault tree analysis and the initiating event frequency. Saphire was used for the PSA analysis. The results show that the average frequency of an accident at this complex is 2.5E-06, which is divided into the various end states. The dominant sequences result in graphite oxidation which does not pose a health risk to the population. The dominant sequences that could affect the population are those that result in a methane explosion and occur 6.6E-8/year, while the other sequences are much less frequent. The health risk presents itself if there are people in the vicinity who could be affected by the explosion. This analysis also demonstrates that an accident in one of the plants has little effect on the other. This is true given the design base distance between the plants, the fact that the reactor is underground, as well as other safety characteristics of the HTGR. Sensitivity studies are being performed in order to determine where additional and improved data is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical behavior of three tungsten (W) alloys with vanadium (V) and lanthana (La2O3) additions (W–4%V, W–1%La2O3, W–4%V–1%La2O3) processed by hot isostatic pressing (HIP) have been compared with pure-W to analyze the influence of the dopants. Mechanical characterization was performed by three point bending (TPB) tests in an oxidizing air atmosphere and temperature range between 77 (immersion tests in liquid nitrogen) and 1273 K, through which the fracture toughness, flexural strength, and yield strength as function of temperature were obtained. Results show that the V and La2O3 additions improve the mechanical properties and oxidation behavior, respectively. Furthermore, a synergistic effect of both dopants results in an extraordinary increase of the flexure strength, fracture toughness and resistance to oxidation compared to pure-W, especially at higher temperatures. In addition, a new experimental method was developed to obtain a very small notch tip radius (around 5–7 μm) and much more similar to a crack through the use of a new machined notch. The fracture toughness results were lower than those obtained with traditional machining of the notch, which can be explained with electron microscopy, observations of deformation in the rear part of the notch tip. Finally, scanning electron microscopy (SEM) examination of the microstructure and fracture surfaces was used to determine and analyze the relationship between the macroscopic mechanical properties and the micromechanisms of failure involved, depending on the temperature and the dispersion of the alloy.