28 resultados para Systems fuzzy
em Universidad Politécnica de Madrid
Resumo:
The confluence of three-dimensional (3D) virtual worlds with social networks imposes on software agents, in addition to conversational functions, the same behaviours as those common to human-driven avatars. In this paper, we explore the possibilities of the use of metabots (metaverse robots) with motion capabilities in complex virtual 3D worlds and we put forward a learning model based on the techniques used in evolutionary computation for optimizing the fuzzy controllers which will subsequently be used by metabots for moving around a virtual environment.
Resumo:
An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm.
Resumo:
The Cross-Entropy (CE) is an efficient method for the estimation of rare-event probabilities and combinatorial optimization. This work presents a novel approach of the CE for optimization of a Soft-Computing controller. A Fuzzy controller was designed to command an unmanned aerial system (UAS) for avoiding collision task. The only sensor used to accomplish this task was a forward camera. The CE is used to reach a near-optimal controller by modifying the scaling factors of the controller inputs. The optimization was realized using the ROS-Gazebo simulation system. In order to evaluate the optimization a big amount of tests were carried out with a real quadcopter.
Resumo:
INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.
Resumo:
Assets are interrelated in risk analysis methodologies for information systems promoted by international standards. This means that an attack on one asset can be propagated through the network and threaten an organization's most valuable assets. It is necessary to valuate all assets, the direct and indirect asset dependencies, as well as the probability of threats and the resulting asset degradation. These methodologies do not, however, consider uncertain valuations and use precise values on different scales, usually percentages. Linguistic terms are used by the experts to represent assets values, dependencies and frequency and asset degradation associated with possible threats. Computations are based on the trapezoidal fuzzy numbers associated with these linguistic terms.
Resumo:
We propose a fuzzy approach to deal with risk analysis for information systems. We extend MAGERIT methodology that valuates the asset dependencies to a fuzzy framework adding fuzzy linguistic terms to valuate the different elements (terminal asset values, asset dependencies as well as the probability of threats and the resulting asset degradation) in risk analysis. Computations are based on the trapezoidal fuzzy numbers associated with these linguistic terms and, finally, the results of these operations are translated into a linguistic term by means of a similarity function.
Resumo:
In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.
Resumo:
In this paper we focus on the selection of safeguards in a fuzzy risk analysis and management methodology for information systems (IS). Assets are connected by dependency relationships, and a failure of one asset may affect other assets. After computing impact and risk indicators associated with previously identified threats, we identify and apply safeguards to reduce risks in the IS by minimizing the transmission probabilities of failures throughout the asset network. However, as safeguards have associated costs, the aim is to select the safeguards that minimize costs while keeping the risk within acceptable levels. To do this, we propose a dynamic programming-based method that incorporates simulated annealing to tackle optimizations problems.
Resumo:
The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.
Resumo:
The fuzzy min–max neural network classifier is a supervised learning method. This classifier takes the hybrid neural networks and fuzzy systems approach. All input variables in the network are required to correspond to continuously valued variables, and this can be a significant constraint in many real-world situations where there are not only quantitative but also categorical data. The usual way of dealing with this type of variables is to replace the categorical by numerical values and treat them as if they were continuously valued. But this method, implicitly defines a possibly unsuitable metric for the categories. A number of different procedures have been proposed to tackle the problem. In this article, we present a new method. The procedure extends the fuzzy min–max neural network input to categorical variables by introducing new fuzzy sets, a new operation, and a new architecture. This provides for greater flexibility and wider application. The proposed method is then applied to missing data imputation in voting intention polls. The micro data—the set of the respondents’ individual answers to the questions—of this type of poll are especially suited for evaluating the method since they include a large number of numerical and categorical attributes.
Resumo:
Trillas et al. (1999, Soft computing, 3 (4), 197–199) and Trillas and Cubillo (1999, On non-contradictory input/output couples in Zadeh's CRI proceeding, 28–32) introduced the study of contradiction in the framework of fuzzy logic because of the significance of avoiding contradictory outputs in inference processes. Later, the study of contradiction in the framework of Atanassov's intuitionistic fuzzy sets (A-IFSs) was initiated by Cubillo and Castiñeira (2004, Contradiction in intuitionistic fuzzy sets proceeding, 2180–2186). The axiomatic definition of contradiction measure was stated in Castiñeira and Cubillo (2009, International journal of intelligent systems, 24, 863–888). Likewise, the concept of continuity of these measures was formalized through several axioms. To be precise, they defined continuity when the sets ‘are increasing’, denominated continuity from below, and continuity when the sets ‘are decreasing’, or continuity from above. The aim of this paper is to provide some geometrical construction methods for obtaining contradiction measures in the framework of A-IFSs and to study what continuity properties these measures satisfy. Furthermore, we show the geometrical interpretations motivating the measures.
Resumo:
The run-of-river hydro power plant usually have low or nil water storage capacity, and therefore an adequate control strategy is required to keep the water level constant in pond. This paper presents a novel technique based on TSK fuzzy controller to maintain the pond head constant. The performance is investigated over a wide range of hill curve of hydro turbine. The results are compared with PI controller as discussed in [1].
Resumo:
This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the colour information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintaining it with a fixed safe distance and centred on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation