9 resultados para Synthetic apertures
em Universidad Politécnica de Madrid
Resumo:
Zinc chelates have been widely used to correct deficiencies in this micronutrient in different soil types and under different moisture conditions. The aging of the metal in soil could cause a change in its availability. Over time the most labile forms of Zn could decrease in activity and extractability and change to more stable forms. Various soil parameters, such as redox conditions, time, soil type and moisture conditions, affect the aging process and modify the solubility of the metal. In general, redox conditions influence pH and also the chemical forms dissolved in the soil solution. Soil pH also affects Zn solubility; at high pH values, most of the Zn is present in forms that are not bioavailable to plants. The objective of this study was to determine the changes in Zn over time in a soil solution in a waterlogged acidic soil to which synthetic and natural chelates were applied
Resumo:
Adding Zn improves crop growth, increases seed yield and also positively affects nutritional quality. After Zn fertilization, there is normally a period of several years in which residual effects provide an adequate supply of Zn to successive crops. Immediately after the application of Zn sources water-soluble Zn slowly but continually decreases. Various factors, including time and moisture conditions, affect the aging process and modify the solubility of the metal in soil and therefore its availability. In previous experiments, we studied the residual effect of synthetic chelates, obtained that the amounts of potentially available Zn decreased in the second cropping year due to aging processes. The present study was undertaken to verify variations in the residual effects of applying four different synthetic Zn sources
Resumo:
Synthetic Aperture Radar (SAR) images a target region reflectivity function in the multi-dimensional spatial domain of range and cross-range. SAR synthesizes a large aperture radar in order to achieve a finer azimuth resolution than the one provided by any on-board real antenna. Conventional SAR techniques assume a single reflection of transmitted waveforms from targets. Nevertheless, today¿s new scenes force SAR systems to work in urban environments. Consequently, multiple-bounce returns are added to directscatter echoes. We refer to these as ghost images, since they obscure true target image and lead to poor resolution. By analyzing the quadratic phase error (QPE), this paper demonstrates that Earth¿s curvature influences the defocusing degree of multipath returns. In addition to the QPE, other parameters such as integrated sidelobe ratio (ISLR), peak sidelobe ratio (PSLR), contrast (C) and entropy (E) provide us with the tools to identify direct-scatter echoes in images containing undesired returns coming from multipath.
Resumo:
A simple and scalable chemical approach has been proposed for the generation of 1-dimensional nanostructures of two most important inorganic materials such as zinc oxide and cadmium sulfide. By controlling the growth habit of the nanostructures with manipulated reaction conditions, the diameter and uniformity of the nanowires/nanorods were tailored. We studied extensively optical behavior and structural growth of CdS NWs and ZnO NRs doped ferroelectric liquid crystal Felix-017/100. Due to doping band gap has been changed and several blue shifts occurred in photoluminescence spectra because of nanoconfinement effect and mobility of charges.
Resumo:
Foliage Penetration (FOPEN) radar systems were introduced in 1960, and have been constantly improved by several organizations since that time. The use of Synthetic Aperture Radar (SAR) approaches for this application has important advantages, due to the need for high resolution in two dimensions. The design of this type of systems, however, includes some complications that are not present in standard SAR systems. FOPEN SAR systems need to operate with a low central frequency (VHF or UHF bands) in order to be able to penetrate the foliage. High bandwidth is also required to obtain high resolution. Due to the low central frequency, large integration angles are required during SAR image formation, and therefore the Range Migration Algorithm (RMA) is used. This project thesis identifies the three main complications that arise due to these requirements. First, a high fractional bandwidth makes narrowband propagation models no longer valid. Second, the VHF and UHF bands are used by many communications systems. The transmitted signal spectrum needs to be notched to avoid interfering them. Third, those communications systems cause Radio Frequency Interference (RFI) on the received signal. The thesis carries out a thorough analysis of the three problems, their degrading effects and possible solutions to compensate them. The UWB model is applied to the SAR signal, and the degradation induced by it is derived. The result is tested through simulation of both a single pulse stretch processor and the complete RMA image formation. Both methods show that the degradation is negligible, and therefore the UWB propagation effect does not need compensation. A technique is derived to design a notched transmitted signal. Then, its effect on the SAR image formation is evaluated analytically. It is shown that the stretch processor introduces a processing gain that reduces the degrading effects of the notches. The remaining degrading effect after processing gain is assessed through simulation, and an experimental graph of degradation as a function of percentage of nulled frequencies is obtained. The RFI is characterized and its effect on the SAR processor is derived. Once again, a processing gain is found to be introduced by the receiver. As the RFI power can be much higher than that of the desired signal, an algorithm is proposed to remove the RFI from the received signal before RMA processing. This algorithm is a modification of the Chirp Least Squares Algorithm (CLSA) explained in [4], which adapts it to deramped signals. The algorithm is derived analytically and then its performance is evaluated through simulation, showing that it is effective in removing the RFI and reducing the degradation caused by both RFI and notching. Finally, conclusions are drawn as to the importance of each one of the problems in SAR system design.
Resumo:
The first demonstration of fabrication of submicron lateral resolution molecularly imprinted polymer (MIP) patterns by photoinduced local polymerization within metal subwavelength apertures is reported. The size of the photopolymerized MIP features is finely tuned by the dose of 532 nm radiation. Rhodamine 123 (R123) has been selected as a fluorescent model template to prove the recognition capability of the MIP nanostructures, which has been evaluated by fluorescence lifetime imaging microscopy (FLIM) with single photon timing measurements. The binding selectivity provided by the imprinting effect has been confirmed in the presence of compounds structurally related to R123. These results pave the way to the development of nanomaterial architectures with biomimetic artificial recognition properties for environmental, clinical and food testing.
Resumo:
A numerical simulation of the aerodynamic behavior of high-speed trains under synthetic crosswinds at a 90º yaw angle is presented. The train geometry is the aerodynamic train model (ATM). Flow description based on numerical simulations is obtained using large eddy simulation (LES) and the commercial code ANSYSFluent V14.5. A crosswind whose averaged velocity and turbulence characteristics change with distance to the ground is imposed. Turbulent fluctuations that vary temporally and spatially are simulated with TurbSim code. The crosswind boundary condition is calculated for the distance the train runs during a simulation period. The inlet streamwise velocity boundary condition is generated using Taylor?s frozen turbulence hypothesis. The model gives a time history of the force and moments acting on the train; this includes averaged values, standard deviations and extreme values. Of particular interest are the spectra of the forces and moments, and the admittance spectra. For comparison, results obtained with LES and a uniform wind velocity fluctuating in time, and results obtained with Reynolds averaged Navier Stokes equations (RANS), and the averaged wind conditions, are also presented.
Resumo:
Numerical simulations of flow surrounding a synthetic jet actuating device are presented. By modifying a dynamic mesh technique available in OpenFoam-a well-documented open-source solver for fluid dynamics, detailed computations of the sinusoidal motion of the synthetic jet diaphragm were possible. Numerical solutions were obtained by solving the two dimensional incompressible viscous N-S equations, with the use of a second order implicit time marching scheme and a central finite volume method for spatial discretization in both streamwise and crossflow directions. A systematic parametric study is reported here, in which the external Reynolds number, the diaphragm amplitude and frequency, and the slot dimensions are varied.
Resumo:
La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.